Cargando…

The effects of corn silk on glycaemic metabolism

BACKGROUND: Corn silk contains proteins, vitamins, carbohydrates, Ca, K, Mg and Na salts, fixed and volatile oils, steroids such as sitosterol and stigmasterol, alkaloids, saponins, tannins, and flavonoids. Base on folk remedies, corn silk has been used as an oral antidiabetic agent in China for dec...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Jianyou, Liu, Tongjun, Han, Linna, Liu, Yongmei
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785813/
https://www.ncbi.nlm.nih.gov/pubmed/19930631
http://dx.doi.org/10.1186/1743-7075-6-47
Descripción
Sumario:BACKGROUND: Corn silk contains proteins, vitamins, carbohydrates, Ca, K, Mg and Na salts, fixed and volatile oils, steroids such as sitosterol and stigmasterol, alkaloids, saponins, tannins, and flavonoids. Base on folk remedies, corn silk has been used as an oral antidiabetic agent in China for decades. However, the hypoglycemic activity of it has not yet been understood in terms of modern pharmacological concepts. The purpose of this study is to investigate the effects of corn silk on glycaemic metabolism. METHODS: Alloxan and adrenalin induced hyperglycemic mice were used in the study. The effects of corn silk on blood glucose, glycohemoglobin (HbA1c), insulin secretion, damaged pancreatic β-cells, hepatic glycogen and gluconeogenesis in hyperglycemic mice were studied respectively. RESULTS: After the mice were orally administered with corn silk extract, the blood glucose and the HbA1c were significantly decreased in alloxan-induced hyperglycemic mice (p < 0.05, p < 0.01, respectively), while the level of insulin secretionn was markedly elevated in alloxa-induced hyperglycemic mice (p < 0.05). The alloxan-damaged pancreatic β-cells of the mice were partly recovered gradually after the mice were administered with corn silk extract 15 days later. Also, the body weight of the alloxan-induced hyperglycemic mice was increased gradually. However, ascension of blood glucose induced by adrenalin and gluconeogenesis induced by L-alanine were not inhibited by corn silk extract treatment (p > 0.05). Although corn silk extract increased the level of hepatic glycogen in the alloxan-induced hyperglycemic mice, there was no significant difference between them and that of the control group(p > 0.05). CONCLUSION: Corn silk extract markedly reduced hyperglycemia in alloxan-induced diabetic mice. The action of corn silk extract on glycaemic metabolism is not via increasing glycogen and inhibiting gluconeogenesis but through increasing insulin level as well as recovering the injured β-cells. The results suggest that corn silk extract may be used as a hypoglycemic food or medicine for hyperglycemic people in terms of this modern pharmacological study.