Cargando…
Innate Immune and Chemically Triggered Oxidative Stress Modifies Translational Fidelity
Translational fidelity, essential for protein and cell function, requires accurate tRNA aminoacylation. Purified aminoacyl-tRNA synthetases exhibit a fidelity of 1 error per 10,000 to 100,000 couplings 1, 2. The accuracy of tRNA aminoacylation in vivo is uncertain, however, and might be considerably...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785853/ https://www.ncbi.nlm.nih.gov/pubmed/19940929 http://dx.doi.org/10.1038/nature08576 |
_version_ | 1782174846858297344 |
---|---|
author | Netzer, Nir Goodenbour, Jeffrey M. David, Alexandre Dittmar, Kimberly A. Jones, Richard B. Schneider, Jeffrey R. Boone, David Eves, Eva M. Rosner, Marsha R. Gibbs, James S. Embry, Alan Dolan, Brian Das, Suman Hickman, Heather Berglund, Peter Bennink, Jack R. Yewdell, Jonathan W. Pan, Tao |
author_facet | Netzer, Nir Goodenbour, Jeffrey M. David, Alexandre Dittmar, Kimberly A. Jones, Richard B. Schneider, Jeffrey R. Boone, David Eves, Eva M. Rosner, Marsha R. Gibbs, James S. Embry, Alan Dolan, Brian Das, Suman Hickman, Heather Berglund, Peter Bennink, Jack R. Yewdell, Jonathan W. Pan, Tao |
author_sort | Netzer, Nir |
collection | PubMed |
description | Translational fidelity, essential for protein and cell function, requires accurate tRNA aminoacylation. Purified aminoacyl-tRNA synthetases exhibit a fidelity of 1 error per 10,000 to 100,000 couplings 1, 2. The accuracy of tRNA aminoacylation in vivo is uncertain, however, and might be considerably lower 3–6. Here, we show that in mammalian cells, approximately 1% of methionine (Met) residues used in protein synthesis are aminoacylated to non-methionyl-tRNAs. Remarkably, Met-misacylation increases up to 10-fold upon exposing cells to live or non-infectious viruses, toll-like receptor ligands, or chemically induced oxidative stress. Met is misacylated to specific non-methionyl-tRNA families, and these Met-misacylated tRNAs are used in translation. Met-misacylation is blocked by an inhibitor of cellular oxidases, implicating reactive oxygen species (ROS) as the misacylation trigger. Among six amino acids tested, tRNA misacylation occurs exclusively with Met. As Met residues are known to protect proteins against ROS-mediated damage 7, we propose that Met-misacylation functions adaptively to increase Met incorporation into proteins to protect cells against oxidative stress. In demonstrating an unexpected conditional aspect of decoding mRNA, our findings illustrate the importance of considering alternative iterations of the genetic code. |
format | Text |
id | pubmed-2785853 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
record_format | MEDLINE/PubMed |
spelling | pubmed-27858532010-05-26 Innate Immune and Chemically Triggered Oxidative Stress Modifies Translational Fidelity Netzer, Nir Goodenbour, Jeffrey M. David, Alexandre Dittmar, Kimberly A. Jones, Richard B. Schneider, Jeffrey R. Boone, David Eves, Eva M. Rosner, Marsha R. Gibbs, James S. Embry, Alan Dolan, Brian Das, Suman Hickman, Heather Berglund, Peter Bennink, Jack R. Yewdell, Jonathan W. Pan, Tao Nature Article Translational fidelity, essential for protein and cell function, requires accurate tRNA aminoacylation. Purified aminoacyl-tRNA synthetases exhibit a fidelity of 1 error per 10,000 to 100,000 couplings 1, 2. The accuracy of tRNA aminoacylation in vivo is uncertain, however, and might be considerably lower 3–6. Here, we show that in mammalian cells, approximately 1% of methionine (Met) residues used in protein synthesis are aminoacylated to non-methionyl-tRNAs. Remarkably, Met-misacylation increases up to 10-fold upon exposing cells to live or non-infectious viruses, toll-like receptor ligands, or chemically induced oxidative stress. Met is misacylated to specific non-methionyl-tRNA families, and these Met-misacylated tRNAs are used in translation. Met-misacylation is blocked by an inhibitor of cellular oxidases, implicating reactive oxygen species (ROS) as the misacylation trigger. Among six amino acids tested, tRNA misacylation occurs exclusively with Met. As Met residues are known to protect proteins against ROS-mediated damage 7, we propose that Met-misacylation functions adaptively to increase Met incorporation into proteins to protect cells against oxidative stress. In demonstrating an unexpected conditional aspect of decoding mRNA, our findings illustrate the importance of considering alternative iterations of the genetic code. 2009-11-26 /pmc/articles/PMC2785853/ /pubmed/19940929 http://dx.doi.org/10.1038/nature08576 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Netzer, Nir Goodenbour, Jeffrey M. David, Alexandre Dittmar, Kimberly A. Jones, Richard B. Schneider, Jeffrey R. Boone, David Eves, Eva M. Rosner, Marsha R. Gibbs, James S. Embry, Alan Dolan, Brian Das, Suman Hickman, Heather Berglund, Peter Bennink, Jack R. Yewdell, Jonathan W. Pan, Tao Innate Immune and Chemically Triggered Oxidative Stress Modifies Translational Fidelity |
title | Innate Immune and Chemically Triggered Oxidative Stress Modifies Translational Fidelity |
title_full | Innate Immune and Chemically Triggered Oxidative Stress Modifies Translational Fidelity |
title_fullStr | Innate Immune and Chemically Triggered Oxidative Stress Modifies Translational Fidelity |
title_full_unstemmed | Innate Immune and Chemically Triggered Oxidative Stress Modifies Translational Fidelity |
title_short | Innate Immune and Chemically Triggered Oxidative Stress Modifies Translational Fidelity |
title_sort | innate immune and chemically triggered oxidative stress modifies translational fidelity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785853/ https://www.ncbi.nlm.nih.gov/pubmed/19940929 http://dx.doi.org/10.1038/nature08576 |
work_keys_str_mv | AT netzernir innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT goodenbourjeffreym innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT davidalexandre innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT dittmarkimberlya innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT jonesrichardb innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT schneiderjeffreyr innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT boonedavid innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT evesevam innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT rosnermarshar innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT gibbsjamess innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT embryalan innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT dolanbrian innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT dassuman innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT hickmanheather innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT berglundpeter innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT benninkjackr innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT yewdelljonathanw innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity AT pantao innateimmuneandchemicallytriggeredoxidativestressmodifiestranslationalfidelity |