Cargando…

Cellular senescence induced by aberrant MAD2 levels impacts on paclitaxel responsiveness in vitro

BACKGROUND: The mitotic arrest deficiency protein 2 (MAD2) is a key component of the mitotic spindle assembly checkpoint, monitoring accurate chromosomal alignment at the metaphase plate before mitosis. MAD2 also has a function in cellular senescence and in a cell's response to microtubule inhi...

Descripción completa

Detalles Bibliográficos
Autores principales: Prencipe, M, Fitzpatrick, P, Gorman, S, Mosetto, M, Klinger, R, Furlong, F, Harrison, M, O'Connor, D, Roninson, I B, O'Sullivan, J, McCann, A
Formato: Texto
Lenguaje:English
Publicado: Nature Publishing Group 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788249/
https://www.ncbi.nlm.nih.gov/pubmed/19935801
http://dx.doi.org/10.1038/sj.bjc.6605419
Descripción
Sumario:BACKGROUND: The mitotic arrest deficiency protein 2 (MAD2) is a key component of the mitotic spindle assembly checkpoint, monitoring accurate chromosomal alignment at the metaphase plate before mitosis. MAD2 also has a function in cellular senescence and in a cell's response to microtubule inhibitory (MI) chemotherapy exemplified by paclitaxel. METHODS: Using an siRNA approach, the impact of MAD2 down-regulation on cellular senescence and paclitaxel responsiveness was investigated. The endpoints of senescence, cell viability, migration, cytokine expression, cell cycle analysis and anaphase bridge scoring were carried out using standard approaches. RESULTS: We show that MAD2 down-regulation induces premature senescence in the MCF7 breast epithelial cancer cell line. These MAD2-depleted (MAD2↓) cells are also significantly replicative incompetent but retain viability. Moreover, they show significantly higher levels of anaphase bridges and polyploidy compared to controls. In addition, these cells secrete higher levels of IL-6 and IL-8 representing key components of the senescence-associated secretory phenotype (SASP) with the ability to impact on neighbouring cells. In support of this, MAD2↓ cells show enhanced migratory ability. At 72 h after paclitaxel, MAD2↓ cells show a significant further induction of senescence compared with paclitaxel naive controls. In addition, there are significantly more viable cells in the MAD2↓ MCF7 cell line after paclitaxel reflecting the observed increase in senescence. CONCLUSION: Considering that paclitaxel targets actively dividing cells, these senescent cells will evade cytotoxic kill. In conclusion, compromised MAD2 levels induce a population of senescent cells resistant to paclitaxel.