Cargando…
MINER: exploratory analysis of gene interaction networks by machine learning from expression data
BACKGROUND: The reconstruction of gene regulatory networks from high-throughput "omics" data has become a major goal in the modelling of living systems. Numerous approaches have been proposed, most of which attempt only "one-shot" reconstruction of the whole network with no inter...
Autores principales: | Kadupitige, Sidath Randeni, Leung, Kin Chun, Sellmeier, Julia, Sivieng, Jane, Catchpoole, Daniel R, Bain, Michael E, Gaëta, Bruno A |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788369/ https://www.ncbi.nlm.nih.gov/pubmed/19958480 http://dx.doi.org/10.1186/1471-2164-10-S3-S17 |
Ejemplares similares
-
BIOADI: a machine learning approach to identifying abbreviations and definitions in biological literature
por: Kuo, Cheng-Ju, et al.
Publicado: (2009) -
Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis
por: You, Zhu-Hong, et al.
Publicado: (2013) -
Machine learning techniques to identify putative genes involved in nitrogen catabolite repression in the yeast Saccharomyces cerevisiae
por: Kontos, Kevin, et al.
Publicado: (2008) -
Clustering-based identification of clonally-related immunoglobulin gene sequence sets
por: Chen, Zhiliang, et al.
Publicado: (2010) -
Graph ranking for exploratory gene data analysis
por: Gao, Cuilan, et al.
Publicado: (2009)