Cargando…

Comparative study of protein-protein interaction observed in PolyGalacturonase-Inhibiting Proteins from Phaseolus vulgaris and Glycine max and PolyGalacturonase from Fusarium moniliforme

BACKGROUND: The PolyGalacturonase-Inhibiting Proteins (PGIP) of plant cell wall limit the invasion of phytopathogenic organisms by interacting with the enzyme PolyGalacturonase (PG) they secrete to degrade pectin present in the cell walls. PGIPs from different or same plant differ in their inhibitor...

Descripción completa

Detalles Bibliográficos
Autores principales: Maulik, Aditi, Ghosh, Hiren, Basu, Soumalee
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788371/
https://www.ncbi.nlm.nih.gov/pubmed/19958482
http://dx.doi.org/10.1186/1471-2164-10-S3-S19
_version_ 1782174966218752000
author Maulik, Aditi
Ghosh, Hiren
Basu, Soumalee
author_facet Maulik, Aditi
Ghosh, Hiren
Basu, Soumalee
author_sort Maulik, Aditi
collection PubMed
description BACKGROUND: The PolyGalacturonase-Inhibiting Proteins (PGIP) of plant cell wall limit the invasion of phytopathogenic organisms by interacting with the enzyme PolyGalacturonase (PG) they secrete to degrade pectin present in the cell walls. PGIPs from different or same plant differ in their inhibitory activity towards the same PG. PGIP2 from Phaseolus vulgaris (Pv) inhibits the PG from Fusarium moniliforme (Fm) although PGIP1, another member of the multigene family from the same plant sharing 99% sequence similarity, cannot. Interestingly, PGIP3 from Glycine max (Gm) which is a homologue of PGIP2 is capable of inhibiting the same PG although the extent of similarity is lower and is 88%. It therefore appears that subtle changes in the sequence of plant PGIPs give rise to different specificity for inhibiting pathogenic PGs and there exists no direct dependence of function on the extent of sequence similarity. RESULTS: Structural information for any PGIP-PG complex being absent, we resorted to molecular modelling to gain insight into the mechanism of recognition and discrimination of PGs by PGIPs. We have built homology models of PvPGIP1 and GmPGIP3 using the crystal structure of PvPGIP2 (1OGQ) as template. These PGIPs were then docked individually to FmPG to elucidate the characteristics of their interactions. The mode of binding for PvPGIP1 to FmPG considerably differs from the mode observed for PvPGIP2-FmPG complex, regardless of the high sequence similarity the two PGIPs share. Both PvPGIP2 and GmPGIP3 despite being relatively less similar, interact with residues of FmPG that are known from mutational studies to constitute the active site of the enzyme. PvPGIP1 tends to interact with residues not located at the active site of FmPG. Looking into the electrostatic potential surface for individual PGIPs, it was evident that a portion of the interacting surface for PvPGIP1 differs from the corresponding region of PvPGIP2 or GmPGIP3. CONCLUSION: van der Waals and eletrostatic interactions play an active role in PGIPs for proper recognition and discrimination of PGs. Docking studies reveal that PvPGIP2 and GmPGIP3 interact with the residues constituting the active site of FmPG with implications that the proteins bind/block FmPG at its active site and thereby inhibit the enzyme.
format Text
id pubmed-2788371
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-27883712009-12-04 Comparative study of protein-protein interaction observed in PolyGalacturonase-Inhibiting Proteins from Phaseolus vulgaris and Glycine max and PolyGalacturonase from Fusarium moniliforme Maulik, Aditi Ghosh, Hiren Basu, Soumalee BMC Genomics Proceedings BACKGROUND: The PolyGalacturonase-Inhibiting Proteins (PGIP) of plant cell wall limit the invasion of phytopathogenic organisms by interacting with the enzyme PolyGalacturonase (PG) they secrete to degrade pectin present in the cell walls. PGIPs from different or same plant differ in their inhibitory activity towards the same PG. PGIP2 from Phaseolus vulgaris (Pv) inhibits the PG from Fusarium moniliforme (Fm) although PGIP1, another member of the multigene family from the same plant sharing 99% sequence similarity, cannot. Interestingly, PGIP3 from Glycine max (Gm) which is a homologue of PGIP2 is capable of inhibiting the same PG although the extent of similarity is lower and is 88%. It therefore appears that subtle changes in the sequence of plant PGIPs give rise to different specificity for inhibiting pathogenic PGs and there exists no direct dependence of function on the extent of sequence similarity. RESULTS: Structural information for any PGIP-PG complex being absent, we resorted to molecular modelling to gain insight into the mechanism of recognition and discrimination of PGs by PGIPs. We have built homology models of PvPGIP1 and GmPGIP3 using the crystal structure of PvPGIP2 (1OGQ) as template. These PGIPs were then docked individually to FmPG to elucidate the characteristics of their interactions. The mode of binding for PvPGIP1 to FmPG considerably differs from the mode observed for PvPGIP2-FmPG complex, regardless of the high sequence similarity the two PGIPs share. Both PvPGIP2 and GmPGIP3 despite being relatively less similar, interact with residues of FmPG that are known from mutational studies to constitute the active site of the enzyme. PvPGIP1 tends to interact with residues not located at the active site of FmPG. Looking into the electrostatic potential surface for individual PGIPs, it was evident that a portion of the interacting surface for PvPGIP1 differs from the corresponding region of PvPGIP2 or GmPGIP3. CONCLUSION: van der Waals and eletrostatic interactions play an active role in PGIPs for proper recognition and discrimination of PGs. Docking studies reveal that PvPGIP2 and GmPGIP3 interact with the residues constituting the active site of FmPG with implications that the proteins bind/block FmPG at its active site and thereby inhibit the enzyme. BioMed Central 2009-12-03 /pmc/articles/PMC2788371/ /pubmed/19958482 http://dx.doi.org/10.1186/1471-2164-10-S3-S19 Text en Copyright ©2009 Maulik et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Proceedings
Maulik, Aditi
Ghosh, Hiren
Basu, Soumalee
Comparative study of protein-protein interaction observed in PolyGalacturonase-Inhibiting Proteins from Phaseolus vulgaris and Glycine max and PolyGalacturonase from Fusarium moniliforme
title Comparative study of protein-protein interaction observed in PolyGalacturonase-Inhibiting Proteins from Phaseolus vulgaris and Glycine max and PolyGalacturonase from Fusarium moniliforme
title_full Comparative study of protein-protein interaction observed in PolyGalacturonase-Inhibiting Proteins from Phaseolus vulgaris and Glycine max and PolyGalacturonase from Fusarium moniliforme
title_fullStr Comparative study of protein-protein interaction observed in PolyGalacturonase-Inhibiting Proteins from Phaseolus vulgaris and Glycine max and PolyGalacturonase from Fusarium moniliforme
title_full_unstemmed Comparative study of protein-protein interaction observed in PolyGalacturonase-Inhibiting Proteins from Phaseolus vulgaris and Glycine max and PolyGalacturonase from Fusarium moniliforme
title_short Comparative study of protein-protein interaction observed in PolyGalacturonase-Inhibiting Proteins from Phaseolus vulgaris and Glycine max and PolyGalacturonase from Fusarium moniliforme
title_sort comparative study of protein-protein interaction observed in polygalacturonase-inhibiting proteins from phaseolus vulgaris and glycine max and polygalacturonase from fusarium moniliforme
topic Proceedings
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788371/
https://www.ncbi.nlm.nih.gov/pubmed/19958482
http://dx.doi.org/10.1186/1471-2164-10-S3-S19
work_keys_str_mv AT maulikaditi comparativestudyofproteinproteininteractionobservedinpolygalacturonaseinhibitingproteinsfromphaseolusvulgarisandglycinemaxandpolygalacturonasefromfusariummoniliforme
AT ghoshhiren comparativestudyofproteinproteininteractionobservedinpolygalacturonaseinhibitingproteinsfromphaseolusvulgarisandglycinemaxandpolygalacturonasefromfusariummoniliforme
AT basusoumalee comparativestudyofproteinproteininteractionobservedinpolygalacturonaseinhibitingproteinsfromphaseolusvulgarisandglycinemaxandpolygalacturonasefromfusariummoniliforme