Cargando…
Anomaly detection in gene expression via stochastic models of gene regulatory networks
BACKGROUND: The steady-state behaviour of gene regulatory networks (GRNs) can provide crucial evidence for detecting disease-causing genes. However, monitoring the dynamics of GRNs is particularly difficult because biological data only reflects a snapshot of the dynamical behaviour of the living org...
Autores principales: | Kim, Haseong, Gelenbe, Erol |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788379/ https://www.ncbi.nlm.nih.gov/pubmed/19958490 http://dx.doi.org/10.1186/1471-2164-10-S3-S26 |
Ejemplares similares
-
Modeling stochasticity and robustness in gene regulatory networks
por: Garg, Abhishek, et al.
Publicado: (2009) -
Stability of building gene regulatory networks with sparse autoregressive models
por: Rajapakse, Jagath C, et al.
Publicado: (2011) -
Functional data analysis for identifying nonlinear models of gene regulatory networks
por: Summer, Georg, et al.
Publicado: (2010) -
Detection of gene orthology from gene co-expression and protein interaction networks
por: Towfic, Fadi, et al.
Publicado: (2010) -
Inferring transcription factor collaborations in gene regulatory networks
por: Awad, Sherine, et al.
Publicado: (2014)