Cargando…

Development and validation of an oligonucleotide microarray to characterise ectomycorrhizal fungal communities

BACKGROUND: In forest ecosystems, communities of ectomycorrhizal fungi (ECM) are influenced by several biotic and abiotic factors. To understand their underlying dynamics, ECM communities have been surveyed with ribosomal DNA-based sequencing methods. However, most identification methods are both ti...

Descripción completa

Detalles Bibliográficos
Autores principales: Reich, Marlis, Kohler, Annegret, Martin, Francis, Buée, Marc
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789087/
https://www.ncbi.nlm.nih.gov/pubmed/19930707
http://dx.doi.org/10.1186/1471-2180-9-241
_version_ 1782175030401040384
author Reich, Marlis
Kohler, Annegret
Martin, Francis
Buée, Marc
author_facet Reich, Marlis
Kohler, Annegret
Martin, Francis
Buée, Marc
author_sort Reich, Marlis
collection PubMed
description BACKGROUND: In forest ecosystems, communities of ectomycorrhizal fungi (ECM) are influenced by several biotic and abiotic factors. To understand their underlying dynamics, ECM communities have been surveyed with ribosomal DNA-based sequencing methods. However, most identification methods are both time-consuming and limited by the number of samples that can be treated in a realistic time frame. As a result of ongoing implementation, the array technique has gained throughput capacity in terms of the number of samples and the capacity for parallel identification of several species. Thus far, although phylochips (microarrays that are used to detect species) have been mostly developed to trace bacterial communities or groups of specific fungi, no phylochip has been developed to carry oligonucleotides for several ectomycorrhizal species that belong to different genera. RESULTS: We have constructed a custom ribosomal DNA phylochip to identify ECM fungi. Specific oligonucleotide probes were targeted to the nuclear internal transcribed spacer (ITS) regions from 95 fungal species belonging to 21 ECM fungal genera. The phylochip was first validated using PCR amplicons of reference species. Ninety-nine percent of the tested oligonucleotides generated positive hybridisation signals with their corresponding amplicons. Cross-hybridisation was mainly restricted at the genus level, particularly for Cortinarius and Lactarius species. The phylochip was subsequently tested with environmental samples that were composed of ECM fungal DNA from spruce and beech plantation fungal communities. The results were in concordance with the ITS sequencing of morphotypes and the ITS clone library sequencing results that were obtained using the same PCR products. CONCLUSION: For the first time, we developed a custom phylochip that is specific for several ectomycorrhizal fungi. To overcome cross-hybridisation problems, specific filter and evaluation strategies that used spot signal intensity were applied. Evaluation of the phylochip by hybridising environmental samples confirmed the possible application of this technology for detecting and monitoring ectomycorrhizal fungi at specific sites in a routine and reproducible manner.
format Text
id pubmed-2789087
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-27890872009-12-05 Development and validation of an oligonucleotide microarray to characterise ectomycorrhizal fungal communities Reich, Marlis Kohler, Annegret Martin, Francis Buée, Marc BMC Microbiol Methodology article BACKGROUND: In forest ecosystems, communities of ectomycorrhizal fungi (ECM) are influenced by several biotic and abiotic factors. To understand their underlying dynamics, ECM communities have been surveyed with ribosomal DNA-based sequencing methods. However, most identification methods are both time-consuming and limited by the number of samples that can be treated in a realistic time frame. As a result of ongoing implementation, the array technique has gained throughput capacity in terms of the number of samples and the capacity for parallel identification of several species. Thus far, although phylochips (microarrays that are used to detect species) have been mostly developed to trace bacterial communities or groups of specific fungi, no phylochip has been developed to carry oligonucleotides for several ectomycorrhizal species that belong to different genera. RESULTS: We have constructed a custom ribosomal DNA phylochip to identify ECM fungi. Specific oligonucleotide probes were targeted to the nuclear internal transcribed spacer (ITS) regions from 95 fungal species belonging to 21 ECM fungal genera. The phylochip was first validated using PCR amplicons of reference species. Ninety-nine percent of the tested oligonucleotides generated positive hybridisation signals with their corresponding amplicons. Cross-hybridisation was mainly restricted at the genus level, particularly for Cortinarius and Lactarius species. The phylochip was subsequently tested with environmental samples that were composed of ECM fungal DNA from spruce and beech plantation fungal communities. The results were in concordance with the ITS sequencing of morphotypes and the ITS clone library sequencing results that were obtained using the same PCR products. CONCLUSION: For the first time, we developed a custom phylochip that is specific for several ectomycorrhizal fungi. To overcome cross-hybridisation problems, specific filter and evaluation strategies that used spot signal intensity were applied. Evaluation of the phylochip by hybridising environmental samples confirmed the possible application of this technology for detecting and monitoring ectomycorrhizal fungi at specific sites in a routine and reproducible manner. BioMed Central 2009-11-24 /pmc/articles/PMC2789087/ /pubmed/19930707 http://dx.doi.org/10.1186/1471-2180-9-241 Text en Copyright ©2009 Reich et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Methodology article
Reich, Marlis
Kohler, Annegret
Martin, Francis
Buée, Marc
Development and validation of an oligonucleotide microarray to characterise ectomycorrhizal fungal communities
title Development and validation of an oligonucleotide microarray to characterise ectomycorrhizal fungal communities
title_full Development and validation of an oligonucleotide microarray to characterise ectomycorrhizal fungal communities
title_fullStr Development and validation of an oligonucleotide microarray to characterise ectomycorrhizal fungal communities
title_full_unstemmed Development and validation of an oligonucleotide microarray to characterise ectomycorrhizal fungal communities
title_short Development and validation of an oligonucleotide microarray to characterise ectomycorrhizal fungal communities
title_sort development and validation of an oligonucleotide microarray to characterise ectomycorrhizal fungal communities
topic Methodology article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789087/
https://www.ncbi.nlm.nih.gov/pubmed/19930707
http://dx.doi.org/10.1186/1471-2180-9-241
work_keys_str_mv AT reichmarlis developmentandvalidationofanoligonucleotidemicroarraytocharacteriseectomycorrhizalfungalcommunities
AT kohlerannegret developmentandvalidationofanoligonucleotidemicroarraytocharacteriseectomycorrhizalfungalcommunities
AT martinfrancis developmentandvalidationofanoligonucleotidemicroarraytocharacteriseectomycorrhizalfungalcommunities
AT bueemarc developmentandvalidationofanoligonucleotidemicroarraytocharacteriseectomycorrhizalfungalcommunities