Cargando…
High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays
BACKGROUND: Single nucleotide polymorphisms (SNPs) have emerged as the genetic marker of choice for mapping disease loci and candidate gene association studies, because of their high density and relatively even distribution in the human genomes. There is a need for systems allowing medium multiplexi...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789104/ https://www.ncbi.nlm.nih.gov/pubmed/19943955 http://dx.doi.org/10.1186/1471-2164-10-561 |
_version_ | 1782175034429669376 |
---|---|
author | Wang, Jun Lin, Min Crenshaw, Andrew Hutchinson, Amy Hicks, Belynda Yeager, Meredith Berndt, Sonja Huang, Wen-Yi Hayes, Richard B Chanock, Stephen J Jones, Robert C Ramakrishnan, Ramesh |
author_facet | Wang, Jun Lin, Min Crenshaw, Andrew Hutchinson, Amy Hicks, Belynda Yeager, Meredith Berndt, Sonja Huang, Wen-Yi Hayes, Richard B Chanock, Stephen J Jones, Robert C Ramakrishnan, Ramesh |
author_sort | Wang, Jun |
collection | PubMed |
description | BACKGROUND: Single nucleotide polymorphisms (SNPs) have emerged as the genetic marker of choice for mapping disease loci and candidate gene association studies, because of their high density and relatively even distribution in the human genomes. There is a need for systems allowing medium multiplexing (ten to hundreds of SNPs) with high throughput, which can efficiently and cost-effectively generate genotypes for a very large sample set (thousands of individuals). Methods that are flexible, fast, accurate and cost-effective are urgently needed. This is also important for those who work on high throughput genotyping in non-model systems where off-the-shelf assays are not available and a flexible platform is needed. RESULTS: We demonstrate the use of a nanofluidic Integrated Fluidic Circuit (IFC) - based genotyping system for medium-throughput multiplexing known as the Dynamic Array, by genotyping 994 individual human DNA samples on 47 different SNP assays, using nanoliter volumes of reagents. Call rates of greater than 99.5% and call accuracies of greater than 99.8% were achieved from our study, which demonstrates that this is a formidable genotyping platform. The experimental set up is very simple, with a time-to-result for each sample of about 3 hours. CONCLUSION: Our results demonstrate that the Dynamic Array is an excellent genotyping system for medium-throughput multiplexing (30-300 SNPs), which is simple to use and combines rapid throughput with excellent call rates, high concordance and low cost. The exceptional call rates and call accuracy obtained may be of particular interest to those working on validation and replication of genome- wide- association (GWA) studies. |
format | Text |
id | pubmed-2789104 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-27891042009-12-05 High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays Wang, Jun Lin, Min Crenshaw, Andrew Hutchinson, Amy Hicks, Belynda Yeager, Meredith Berndt, Sonja Huang, Wen-Yi Hayes, Richard B Chanock, Stephen J Jones, Robert C Ramakrishnan, Ramesh BMC Genomics Methodology article BACKGROUND: Single nucleotide polymorphisms (SNPs) have emerged as the genetic marker of choice for mapping disease loci and candidate gene association studies, because of their high density and relatively even distribution in the human genomes. There is a need for systems allowing medium multiplexing (ten to hundreds of SNPs) with high throughput, which can efficiently and cost-effectively generate genotypes for a very large sample set (thousands of individuals). Methods that are flexible, fast, accurate and cost-effective are urgently needed. This is also important for those who work on high throughput genotyping in non-model systems where off-the-shelf assays are not available and a flexible platform is needed. RESULTS: We demonstrate the use of a nanofluidic Integrated Fluidic Circuit (IFC) - based genotyping system for medium-throughput multiplexing known as the Dynamic Array, by genotyping 994 individual human DNA samples on 47 different SNP assays, using nanoliter volumes of reagents. Call rates of greater than 99.5% and call accuracies of greater than 99.8% were achieved from our study, which demonstrates that this is a formidable genotyping platform. The experimental set up is very simple, with a time-to-result for each sample of about 3 hours. CONCLUSION: Our results demonstrate that the Dynamic Array is an excellent genotyping system for medium-throughput multiplexing (30-300 SNPs), which is simple to use and combines rapid throughput with excellent call rates, high concordance and low cost. The exceptional call rates and call accuracy obtained may be of particular interest to those working on validation and replication of genome- wide- association (GWA) studies. BioMed Central 2009-11-28 /pmc/articles/PMC2789104/ /pubmed/19943955 http://dx.doi.org/10.1186/1471-2164-10-561 Text en Copyright ©2009 Wang et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology article Wang, Jun Lin, Min Crenshaw, Andrew Hutchinson, Amy Hicks, Belynda Yeager, Meredith Berndt, Sonja Huang, Wen-Yi Hayes, Richard B Chanock, Stephen J Jones, Robert C Ramakrishnan, Ramesh High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays |
title | High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays |
title_full | High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays |
title_fullStr | High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays |
title_full_unstemmed | High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays |
title_short | High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays |
title_sort | high-throughput single nucleotide polymorphism genotyping using nanofluidic dynamic arrays |
topic | Methodology article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789104/ https://www.ncbi.nlm.nih.gov/pubmed/19943955 http://dx.doi.org/10.1186/1471-2164-10-561 |
work_keys_str_mv | AT wangjun highthroughputsinglenucleotidepolymorphismgenotypingusingnanofluidicdynamicarrays AT linmin highthroughputsinglenucleotidepolymorphismgenotypingusingnanofluidicdynamicarrays AT crenshawandrew highthroughputsinglenucleotidepolymorphismgenotypingusingnanofluidicdynamicarrays AT hutchinsonamy highthroughputsinglenucleotidepolymorphismgenotypingusingnanofluidicdynamicarrays AT hicksbelynda highthroughputsinglenucleotidepolymorphismgenotypingusingnanofluidicdynamicarrays AT yeagermeredith highthroughputsinglenucleotidepolymorphismgenotypingusingnanofluidicdynamicarrays AT berndtsonja highthroughputsinglenucleotidepolymorphismgenotypingusingnanofluidicdynamicarrays AT huangwenyi highthroughputsinglenucleotidepolymorphismgenotypingusingnanofluidicdynamicarrays AT hayesrichardb highthroughputsinglenucleotidepolymorphismgenotypingusingnanofluidicdynamicarrays AT chanockstephenj highthroughputsinglenucleotidepolymorphismgenotypingusingnanofluidicdynamicarrays AT jonesrobertc highthroughputsinglenucleotidepolymorphismgenotypingusingnanofluidicdynamicarrays AT ramakrishnanramesh highthroughputsinglenucleotidepolymorphismgenotypingusingnanofluidicdynamicarrays |