Cargando…
Single crystalline kinked semiconductor nanowire superstructures
The ability to control and modulate the composition1–4, doping1,3–5, crystal structure6–8 and morphology9,10 of semiconductor nanowires during the synthesis process has allowed researchers to explore various applications of nanowires11–15. However, despite advances in nanowire synthesis, progress to...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789864/ https://www.ncbi.nlm.nih.gov/pubmed/19893521 http://dx.doi.org/10.1038/nnano.2009.304 |
Sumario: | The ability to control and modulate the composition1–4, doping1,3–5, crystal structure6–8 and morphology9,10 of semiconductor nanowires during the synthesis process has allowed researchers to explore various applications of nanowires11–15. However, despite advances in nanowire synthesis, progress towards the ab initio design and growth of hierarchical nanostructures has been limited. Here we demonstrate a ‘nanotectonic’ approach that provides iterative control over the nucleation and growth of nanowires and use it to grow kinked or zigzag nanowires in which the straight sections are separated by triangular joints. Moreover, the lengths of the straight sections can be controlled and the growth direction remains coherent along the nanowire. We also grow dopant-modulated structures in which specific device functions, including p-n diodes and field-effect transistors, can be precisely localized at the kinked junctions in the nanowires. |
---|