Cargando…
Applied Climate-Change Analysis: The Climate Wizard Tool
BACKGROUND: Although the message of “global climate change” is catalyzing international action, it is local and regional changes that directly affect people and ecosystems and are of immediate concern to scientists, managers, and policy makers. A major barrier preventing informed climate-change adap...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790086/ https://www.ncbi.nlm.nih.gov/pubmed/20016827 http://dx.doi.org/10.1371/journal.pone.0008320 |
_version_ | 1782175083938185216 |
---|---|
author | Girvetz, Evan H. Zganjar, Chris Raber, George T. Maurer, Edwin P. Kareiva, Peter Lawler, Joshua J. |
author_facet | Girvetz, Evan H. Zganjar, Chris Raber, George T. Maurer, Edwin P. Kareiva, Peter Lawler, Joshua J. |
author_sort | Girvetz, Evan H. |
collection | PubMed |
description | BACKGROUND: Although the message of “global climate change” is catalyzing international action, it is local and regional changes that directly affect people and ecosystems and are of immediate concern to scientists, managers, and policy makers. A major barrier preventing informed climate-change adaptation planning is the difficulty accessing, analyzing, and interpreting climate-change information. To address this problem, we developed a powerful, yet easy to use, web-based tool called Climate Wizard (http://ClimateWizard.org) that provides non-climate specialists with simple analyses and innovative graphical depictions for conveying how climate has and is projected to change within specific geographic areas throughout the world. METHODOLOGY/PRINCIPAL FINDINGS: To demonstrate the Climate Wizard, we explored historic trends and future departures (anomalies) in temperature and precipitation globally, and within specific latitudinal zones and countries. We found the greatest temperature increases during 1951–2002 occurred in northern hemisphere countries (especially during January–April), but the latitude of greatest temperature change varied throughout the year, sinusoidally ranging from approximately 50°N during February-March to 10°N during August-September. Precipitation decreases occurred most commonly in countries between 0–20°N, and increases mostly occurred outside of this latitudinal region. Similarly, a quantile ensemble analysis based on projections from 16 General Circulation Models (GCMs) for 2070–2099 identified the median projected change within countries, which showed both latitudinal and regional patterns in projected temperature and precipitation change. CONCLUSIONS/SIGNIFICANCE: The results of these analyses are consistent with those reported by the Intergovernmental Panel on Climate Change, but at the same time, they provide examples of how Climate Wizard can be used to explore regionally- and temporally-specific analyses of climate change. Moreover, Climate Wizard is not a static product, but rather a data analysis framework designed to be used for climate change impact and adaption planning, which can be expanded to include other information, such as downscaled future projections of hydrology, soil moisture, wildfire, vegetation, marine conditions, disease, and agricultural productivity. |
format | Text |
id | pubmed-2790086 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-27900862009-12-17 Applied Climate-Change Analysis: The Climate Wizard Tool Girvetz, Evan H. Zganjar, Chris Raber, George T. Maurer, Edwin P. Kareiva, Peter Lawler, Joshua J. PLoS One Research Article BACKGROUND: Although the message of “global climate change” is catalyzing international action, it is local and regional changes that directly affect people and ecosystems and are of immediate concern to scientists, managers, and policy makers. A major barrier preventing informed climate-change adaptation planning is the difficulty accessing, analyzing, and interpreting climate-change information. To address this problem, we developed a powerful, yet easy to use, web-based tool called Climate Wizard (http://ClimateWizard.org) that provides non-climate specialists with simple analyses and innovative graphical depictions for conveying how climate has and is projected to change within specific geographic areas throughout the world. METHODOLOGY/PRINCIPAL FINDINGS: To demonstrate the Climate Wizard, we explored historic trends and future departures (anomalies) in temperature and precipitation globally, and within specific latitudinal zones and countries. We found the greatest temperature increases during 1951–2002 occurred in northern hemisphere countries (especially during January–April), but the latitude of greatest temperature change varied throughout the year, sinusoidally ranging from approximately 50°N during February-March to 10°N during August-September. Precipitation decreases occurred most commonly in countries between 0–20°N, and increases mostly occurred outside of this latitudinal region. Similarly, a quantile ensemble analysis based on projections from 16 General Circulation Models (GCMs) for 2070–2099 identified the median projected change within countries, which showed both latitudinal and regional patterns in projected temperature and precipitation change. CONCLUSIONS/SIGNIFICANCE: The results of these analyses are consistent with those reported by the Intergovernmental Panel on Climate Change, but at the same time, they provide examples of how Climate Wizard can be used to explore regionally- and temporally-specific analyses of climate change. Moreover, Climate Wizard is not a static product, but rather a data analysis framework designed to be used for climate change impact and adaption planning, which can be expanded to include other information, such as downscaled future projections of hydrology, soil moisture, wildfire, vegetation, marine conditions, disease, and agricultural productivity. Public Library of Science 2009-12-15 /pmc/articles/PMC2790086/ /pubmed/20016827 http://dx.doi.org/10.1371/journal.pone.0008320 Text en Girvetz et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Girvetz, Evan H. Zganjar, Chris Raber, George T. Maurer, Edwin P. Kareiva, Peter Lawler, Joshua J. Applied Climate-Change Analysis: The Climate Wizard Tool |
title | Applied Climate-Change Analysis: The Climate Wizard Tool |
title_full | Applied Climate-Change Analysis: The Climate Wizard Tool |
title_fullStr | Applied Climate-Change Analysis: The Climate Wizard Tool |
title_full_unstemmed | Applied Climate-Change Analysis: The Climate Wizard Tool |
title_short | Applied Climate-Change Analysis: The Climate Wizard Tool |
title_sort | applied climate-change analysis: the climate wizard tool |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790086/ https://www.ncbi.nlm.nih.gov/pubmed/20016827 http://dx.doi.org/10.1371/journal.pone.0008320 |
work_keys_str_mv | AT girvetzevanh appliedclimatechangeanalysistheclimatewizardtool AT zganjarchris appliedclimatechangeanalysistheclimatewizardtool AT rabergeorget appliedclimatechangeanalysistheclimatewizardtool AT maureredwinp appliedclimatechangeanalysistheclimatewizardtool AT kareivapeter appliedclimatechangeanalysistheclimatewizardtool AT lawlerjoshuaj appliedclimatechangeanalysistheclimatewizardtool |