Cargando…
RNA Interference and Single Particle Tracking Analysis of Hepatitis C Virus Endocytosis
Hepatitis C virus (HCV) enters hepatocytes following a complex set of receptor interactions, culminating in internalization via clathrin-mediated endocytosis. However, aside from receptors, little is known about the cellular molecular requirements for infectious HCV entry. Therefore, we analyzed a s...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790617/ https://www.ncbi.nlm.nih.gov/pubmed/20041214 http://dx.doi.org/10.1371/journal.ppat.1000702 |
_version_ | 1782175126693871616 |
---|---|
author | Coller, Kelly E. Berger, Kristi L. Heaton, Nicholas S. Cooper, Jacob D. Yoon, Rosa Randall, Glenn |
author_facet | Coller, Kelly E. Berger, Kristi L. Heaton, Nicholas S. Cooper, Jacob D. Yoon, Rosa Randall, Glenn |
author_sort | Coller, Kelly E. |
collection | PubMed |
description | Hepatitis C virus (HCV) enters hepatocytes following a complex set of receptor interactions, culminating in internalization via clathrin-mediated endocytosis. However, aside from receptors, little is known about the cellular molecular requirements for infectious HCV entry. Therefore, we analyzed a siRNA library that targets 140 cellular membrane trafficking genes to identify host genes required for infectious HCV production and HCV pseudoparticle entry. This approach identified 16 host cofactors of HCV entry that function primarily in clathrin-mediated endocytosis, including components of the clathrin endocytosis machinery, actin polymerization, receptor internalization and sorting, and endosomal acidification. We next developed single particle tracking analysis of highly infectious fluorescent HCV particles to examine the co-trafficking of HCV virions with cellular cofactors of endocytosis. We observe multiple, sequential interactions of HCV virions with the actin cytoskeleton, including retraction along filopodia, actin nucleation during internalization, and migration of internalized particles along actin stress fibers. HCV co-localizes with clathrin and the ubiquitin ligase c-Cbl prior to internalization. Entering HCV particles are associated with the receptor molecules CD81 and the tight junction protein, claudin-1; however, HCV-claudin-1 interactions were not restricted to Huh-7.5 cell-cell junctions. Surprisingly, HCV internalization generally occurred outside of Huh-7.5 cell-cell junctions, which may reflect the poorly polarized nature of current HCV cell culture models. Following internalization, HCV particles transport with GFP-Rab5a positive endosomes, which is consistent with trafficking to the early endosome. This study presents technical advances for imaging HCV entry, in addition to identifying new host cofactors of HCV infection, some of which may be antiviral targets. |
format | Text |
id | pubmed-2790617 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-27906172009-12-30 RNA Interference and Single Particle Tracking Analysis of Hepatitis C Virus Endocytosis Coller, Kelly E. Berger, Kristi L. Heaton, Nicholas S. Cooper, Jacob D. Yoon, Rosa Randall, Glenn PLoS Pathog Research Article Hepatitis C virus (HCV) enters hepatocytes following a complex set of receptor interactions, culminating in internalization via clathrin-mediated endocytosis. However, aside from receptors, little is known about the cellular molecular requirements for infectious HCV entry. Therefore, we analyzed a siRNA library that targets 140 cellular membrane trafficking genes to identify host genes required for infectious HCV production and HCV pseudoparticle entry. This approach identified 16 host cofactors of HCV entry that function primarily in clathrin-mediated endocytosis, including components of the clathrin endocytosis machinery, actin polymerization, receptor internalization and sorting, and endosomal acidification. We next developed single particle tracking analysis of highly infectious fluorescent HCV particles to examine the co-trafficking of HCV virions with cellular cofactors of endocytosis. We observe multiple, sequential interactions of HCV virions with the actin cytoskeleton, including retraction along filopodia, actin nucleation during internalization, and migration of internalized particles along actin stress fibers. HCV co-localizes with clathrin and the ubiquitin ligase c-Cbl prior to internalization. Entering HCV particles are associated with the receptor molecules CD81 and the tight junction protein, claudin-1; however, HCV-claudin-1 interactions were not restricted to Huh-7.5 cell-cell junctions. Surprisingly, HCV internalization generally occurred outside of Huh-7.5 cell-cell junctions, which may reflect the poorly polarized nature of current HCV cell culture models. Following internalization, HCV particles transport with GFP-Rab5a positive endosomes, which is consistent with trafficking to the early endosome. This study presents technical advances for imaging HCV entry, in addition to identifying new host cofactors of HCV infection, some of which may be antiviral targets. Public Library of Science 2009-12-24 /pmc/articles/PMC2790617/ /pubmed/20041214 http://dx.doi.org/10.1371/journal.ppat.1000702 Text en Coller et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Coller, Kelly E. Berger, Kristi L. Heaton, Nicholas S. Cooper, Jacob D. Yoon, Rosa Randall, Glenn RNA Interference and Single Particle Tracking Analysis of Hepatitis C Virus Endocytosis |
title | RNA Interference and Single Particle Tracking Analysis of Hepatitis C Virus Endocytosis |
title_full | RNA Interference and Single Particle Tracking Analysis of Hepatitis C Virus Endocytosis |
title_fullStr | RNA Interference and Single Particle Tracking Analysis of Hepatitis C Virus Endocytosis |
title_full_unstemmed | RNA Interference and Single Particle Tracking Analysis of Hepatitis C Virus Endocytosis |
title_short | RNA Interference and Single Particle Tracking Analysis of Hepatitis C Virus Endocytosis |
title_sort | rna interference and single particle tracking analysis of hepatitis c virus endocytosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790617/ https://www.ncbi.nlm.nih.gov/pubmed/20041214 http://dx.doi.org/10.1371/journal.ppat.1000702 |
work_keys_str_mv | AT collerkellye rnainterferenceandsingleparticletrackinganalysisofhepatitiscvirusendocytosis AT bergerkristil rnainterferenceandsingleparticletrackinganalysisofhepatitiscvirusendocytosis AT heatonnicholass rnainterferenceandsingleparticletrackinganalysisofhepatitiscvirusendocytosis AT cooperjacobd rnainterferenceandsingleparticletrackinganalysisofhepatitiscvirusendocytosis AT yoonrosa rnainterferenceandsingleparticletrackinganalysisofhepatitiscvirusendocytosis AT randallglenn rnainterferenceandsingleparticletrackinganalysisofhepatitiscvirusendocytosis |