Cargando…
HMMConverter 1.0: a toolbox for hidden Markov models
Hidden Markov models (HMMs) and their variants are widely used in Bioinformatics applications that analyze and compare biological sequences. Designing a novel application requires the insight of a human expert to define the model's architecture. The implementation of prediction algorithms and a...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790874/ https://www.ncbi.nlm.nih.gov/pubmed/19740770 http://dx.doi.org/10.1093/nar/gkp662 |
Sumario: | Hidden Markov models (HMMs) and their variants are widely used in Bioinformatics applications that analyze and compare biological sequences. Designing a novel application requires the insight of a human expert to define the model's architecture. The implementation of prediction algorithms and algorithms to train the model's parameters, however, can be a time-consuming and error-prone task. We here present HMMConverter, a software package for setting up probabilistic HMMs, pair-HMMs as well as generalized HMMs and pair-HMMs. The user defines the model itself and the algorithms to be used via an XML file which is then directly translated into efficient C++ code. The software package provides linear-memory prediction algorithms, such as the Hirschberg algorithm, banding and the integration of prior probabilities and is the first to present computationally efficient linear-memory algorithms for automatic parameter training. Users of HMMConverter can thus set up complex applications with a minimum of effort and also perform parameter training and data analyses for large data sets. |
---|