Cargando…
HMMConverter 1.0: a toolbox for hidden Markov models
Hidden Markov models (HMMs) and their variants are widely used in Bioinformatics applications that analyze and compare biological sequences. Designing a novel application requires the insight of a human expert to define the model's architecture. The implementation of prediction algorithms and a...
Autores principales: | Lam, Tin Yin, Meyer, Irmtraud M. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790874/ https://www.ncbi.nlm.nih.gov/pubmed/19740770 http://dx.doi.org/10.1093/nar/gkp662 |
Ejemplares similares
-
HMMRATAC: a Hidden Markov ModeleR for ATAC-seq
por: Tarbell, Evan D, et al.
Publicado: (2019) -
Simultaneous characterization of sense and antisense genomic processes by the double-stranded hidden Markov model
por: Glas, Julia, et al.
Publicado: (2016) -
Efficient algorithms for training the parameters of hidden Markov models using stochastic expectation maximization (EM) training and Viterbi training
por: Lam, Tin Y, et al.
Publicado: (2010) -
FOAM (Functional Ontology Assignments for Metagenomes): a Hidden Markov Model (HMM) database with environmental focus
por: Prestat, Emmanuel, et al.
Publicado: (2014) -
Estimating Empirical Codon Hidden Markov Models
por: De Maio, Nicola, et al.
Publicado: (2013)