Cargando…
Function of antioxidant enzymes and metabolites during maturation of pea fruits
In plant cells, antioxidants keep reactive oxygen species at low concentrations, avoiding oxidative damage while allowing them to play crucial functions in signal transduction. However, little is known about the role of antioxidants during fruit maturation, especially in legumes. Snap pea (Pisum sat...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791115/ https://www.ncbi.nlm.nih.gov/pubmed/19822534 http://dx.doi.org/10.1093/jxb/erp285 |
_version_ | 1782175161113378816 |
---|---|
author | Matamoros, Manuel A. Loscos, Jorge Dietz, Karl-Josef Aparicio-Tejo, Pedro M. Becana, Manuel |
author_facet | Matamoros, Manuel A. Loscos, Jorge Dietz, Karl-Josef Aparicio-Tejo, Pedro M. Becana, Manuel |
author_sort | Matamoros, Manuel A. |
collection | PubMed |
description | In plant cells, antioxidants keep reactive oxygen species at low concentrations, avoiding oxidative damage while allowing them to play crucial functions in signal transduction. However, little is known about the role of antioxidants during fruit maturation, especially in legumes. Snap pea (Pisum sativum) plants, which have edible fruits, were grown under nodulating and non-nodulating conditions. Fruits were classified in three maturity stages and antioxidants were determined in the seeds and seedless pods. Maturation or prolonged storage of fruits at 25 °C led to a decline in antioxidant activities and metabolites and in γ-glutamylcysteine synthetase protein. Notable exceptions were superoxide dismutase activity and glutathione peroxidase protein, which increased in one or both of these processes. During maturation, cytosolic peroxiredoxin decreased in seeds but increased in pods, and ascorbate oxidase activity was largely reduced in seeds. In stored fruits, ascorbate oxidase activity was nearly abolished in seeds but doubled in pods. It is concluded that symbiotic nitrogen fixation is as effective as nitrogen fertilization in maintaining the antioxidant capacity of pea fruits and that, contrary to climacteric fruits, a general decrease in antioxidants during maturation does not involve oxidative stress. Results underscore the importance of the antioxidant system in reproductive organs and point to ascorbate–glutathione metabolism and cytosolic peroxiredoxin as key players in pea fruit development. |
format | Text |
id | pubmed-2791115 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-27911152009-12-10 Function of antioxidant enzymes and metabolites during maturation of pea fruits Matamoros, Manuel A. Loscos, Jorge Dietz, Karl-Josef Aparicio-Tejo, Pedro M. Becana, Manuel J Exp Bot Research Papers In plant cells, antioxidants keep reactive oxygen species at low concentrations, avoiding oxidative damage while allowing them to play crucial functions in signal transduction. However, little is known about the role of antioxidants during fruit maturation, especially in legumes. Snap pea (Pisum sativum) plants, which have edible fruits, were grown under nodulating and non-nodulating conditions. Fruits were classified in three maturity stages and antioxidants were determined in the seeds and seedless pods. Maturation or prolonged storage of fruits at 25 °C led to a decline in antioxidant activities and metabolites and in γ-glutamylcysteine synthetase protein. Notable exceptions were superoxide dismutase activity and glutathione peroxidase protein, which increased in one or both of these processes. During maturation, cytosolic peroxiredoxin decreased in seeds but increased in pods, and ascorbate oxidase activity was largely reduced in seeds. In stored fruits, ascorbate oxidase activity was nearly abolished in seeds but doubled in pods. It is concluded that symbiotic nitrogen fixation is as effective as nitrogen fertilization in maintaining the antioxidant capacity of pea fruits and that, contrary to climacteric fruits, a general decrease in antioxidants during maturation does not involve oxidative stress. Results underscore the importance of the antioxidant system in reproductive organs and point to ascorbate–glutathione metabolism and cytosolic peroxiredoxin as key players in pea fruit development. Oxford University Press 2010-01 2009-10-11 /pmc/articles/PMC2791115/ /pubmed/19822534 http://dx.doi.org/10.1093/jxb/erp285 Text en © 2009 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details) |
spellingShingle | Research Papers Matamoros, Manuel A. Loscos, Jorge Dietz, Karl-Josef Aparicio-Tejo, Pedro M. Becana, Manuel Function of antioxidant enzymes and metabolites during maturation of pea fruits |
title | Function of antioxidant enzymes and metabolites during maturation of pea fruits |
title_full | Function of antioxidant enzymes and metabolites during maturation of pea fruits |
title_fullStr | Function of antioxidant enzymes and metabolites during maturation of pea fruits |
title_full_unstemmed | Function of antioxidant enzymes and metabolites during maturation of pea fruits |
title_short | Function of antioxidant enzymes and metabolites during maturation of pea fruits |
title_sort | function of antioxidant enzymes and metabolites during maturation of pea fruits |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791115/ https://www.ncbi.nlm.nih.gov/pubmed/19822534 http://dx.doi.org/10.1093/jxb/erp285 |
work_keys_str_mv | AT matamorosmanuela functionofantioxidantenzymesandmetabolitesduringmaturationofpeafruits AT loscosjorge functionofantioxidantenzymesandmetabolitesduringmaturationofpeafruits AT dietzkarljosef functionofantioxidantenzymesandmetabolitesduringmaturationofpeafruits AT apariciotejopedrom functionofantioxidantenzymesandmetabolitesduringmaturationofpeafruits AT becanamanuel functionofantioxidantenzymesandmetabolitesduringmaturationofpeafruits |