Cargando…
Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells
Bone-marrow-derived mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and differentiation into multiple cell types. Accumulating preclinical and clinical evidence indicates that MSCs are good candidates to use as cell therapy in many degenerative diseases. For MSC clinical...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2793379/ https://www.ncbi.nlm.nih.gov/pubmed/19957104 http://dx.doi.org/10.1007/s10577-009-9090-6 |
_version_ | 1782175313645535232 |
---|---|
author | Foudah, Dana Redaelli, Serena Donzelli, Elisabetta Bentivegna, Angela Miloso, Mariarosaria Dalprà, Leda Tredici, Giovanni |
author_facet | Foudah, Dana Redaelli, Serena Donzelli, Elisabetta Bentivegna, Angela Miloso, Mariarosaria Dalprà, Leda Tredici, Giovanni |
author_sort | Foudah, Dana |
collection | PubMed |
description | Bone-marrow-derived mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and differentiation into multiple cell types. Accumulating preclinical and clinical evidence indicates that MSCs are good candidates to use as cell therapy in many degenerative diseases. For MSC clinical applications, an adequate number of cells are necessary so an extensive expansion is required. However, spontaneous immortalization and malignant transformation of MSCs after culture expansion have been reported in human and mouse, while very few data are present for rat MSCs (rMSCs). In this study, we monitored the chromosomal status of rMSCs at several passages in vitro, also testing the influence of four different cell culture conditions. We first used the conventional traditional cytogenetic techniques, in order to have the opportunity to observe even minor structural abnormalities and to identify low-degree mosaic conditions. Then, a more detailed genomic analysis was conducted by array comparative genomic hybridization. We demonstrated that, irrespective of culture conditions, rMSCs manifested a markedly aneuploid karyotype and a progressive chromosomal instability in all the passages we analyzed and that they are anything but stable during in vitro culture. Despite the fact that the risk of neoplastic transformation associated with this genomic instability needs to be further addressed and considering the apparent genomic stability reported for in vitro cultured human MSCs (hMSCs), our findings underline the fact that rMSCs may not in fact be a good model for effectively exploring the full clinical therapeutic potential of hMSCs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10577-009-9090-6) contains supplementary material, which is available to authorized users. |
format | Text |
id | pubmed-2793379 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-27933792009-12-29 Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells Foudah, Dana Redaelli, Serena Donzelli, Elisabetta Bentivegna, Angela Miloso, Mariarosaria Dalprà, Leda Tredici, Giovanni Chromosome Res Article Bone-marrow-derived mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and differentiation into multiple cell types. Accumulating preclinical and clinical evidence indicates that MSCs are good candidates to use as cell therapy in many degenerative diseases. For MSC clinical applications, an adequate number of cells are necessary so an extensive expansion is required. However, spontaneous immortalization and malignant transformation of MSCs after culture expansion have been reported in human and mouse, while very few data are present for rat MSCs (rMSCs). In this study, we monitored the chromosomal status of rMSCs at several passages in vitro, also testing the influence of four different cell culture conditions. We first used the conventional traditional cytogenetic techniques, in order to have the opportunity to observe even minor structural abnormalities and to identify low-degree mosaic conditions. Then, a more detailed genomic analysis was conducted by array comparative genomic hybridization. We demonstrated that, irrespective of culture conditions, rMSCs manifested a markedly aneuploid karyotype and a progressive chromosomal instability in all the passages we analyzed and that they are anything but stable during in vitro culture. Despite the fact that the risk of neoplastic transformation associated with this genomic instability needs to be further addressed and considering the apparent genomic stability reported for in vitro cultured human MSCs (hMSCs), our findings underline the fact that rMSCs may not in fact be a good model for effectively exploring the full clinical therapeutic potential of hMSCs. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10577-009-9090-6) contains supplementary material, which is available to authorized users. Springer Netherlands 2009-12-02 2009-12 /pmc/articles/PMC2793379/ /pubmed/19957104 http://dx.doi.org/10.1007/s10577-009-9090-6 Text en © The Author(s) 2009 |
spellingShingle | Article Foudah, Dana Redaelli, Serena Donzelli, Elisabetta Bentivegna, Angela Miloso, Mariarosaria Dalprà, Leda Tredici, Giovanni Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells |
title | Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells |
title_full | Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells |
title_fullStr | Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells |
title_full_unstemmed | Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells |
title_short | Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells |
title_sort | monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2793379/ https://www.ncbi.nlm.nih.gov/pubmed/19957104 http://dx.doi.org/10.1007/s10577-009-9090-6 |
work_keys_str_mv | AT foudahdana monitoringthegenomicstabilityofinvitroculturedratbonemarrowderivedmesenchymalstemcells AT redaelliserena monitoringthegenomicstabilityofinvitroculturedratbonemarrowderivedmesenchymalstemcells AT donzellielisabetta monitoringthegenomicstabilityofinvitroculturedratbonemarrowderivedmesenchymalstemcells AT bentivegnaangela monitoringthegenomicstabilityofinvitroculturedratbonemarrowderivedmesenchymalstemcells AT milosomariarosaria monitoringthegenomicstabilityofinvitroculturedratbonemarrowderivedmesenchymalstemcells AT dalpraleda monitoringthegenomicstabilityofinvitroculturedratbonemarrowderivedmesenchymalstemcells AT tredicigiovanni monitoringthegenomicstabilityofinvitroculturedratbonemarrowderivedmesenchymalstemcells |