Cargando…

DArT markers for the rye genome - genetic diversity and mapping

BACKGROUND: Implementation of molecular breeding in rye (Secale cereale L.) improvement programs depends on the availability of high-density molecular linkage maps. However, the number of sequence-specific PCR-based markers available for the species is limited. Diversity Arrays Technology (DArT) is...

Descripción completa

Detalles Bibliográficos
Autores principales: Bolibok-Brągoszewska, Hanna, Heller-Uszyńska, Katarzyna, Wenzl, Peter, Uszyński, Grzegorz, Kilian, Andrzej, Rakoczy-Trojanowska, Monika
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795769/
https://www.ncbi.nlm.nih.gov/pubmed/19958552
http://dx.doi.org/10.1186/1471-2164-10-578
_version_ 1782175449727631360
author Bolibok-Brągoszewska, Hanna
Heller-Uszyńska, Katarzyna
Wenzl, Peter
Uszyński, Grzegorz
Kilian, Andrzej
Rakoczy-Trojanowska, Monika
author_facet Bolibok-Brągoszewska, Hanna
Heller-Uszyńska, Katarzyna
Wenzl, Peter
Uszyński, Grzegorz
Kilian, Andrzej
Rakoczy-Trojanowska, Monika
author_sort Bolibok-Brągoszewska, Hanna
collection PubMed
description BACKGROUND: Implementation of molecular breeding in rye (Secale cereale L.) improvement programs depends on the availability of high-density molecular linkage maps. However, the number of sequence-specific PCR-based markers available for the species is limited. Diversity Arrays Technology (DArT) is a microarray-based method allowing for detection of DNA polymorphism at several thousand loci in a single assay without relying on DNA sequence information. The objective of this study was the development and application of Diversity Arrays technology for rye. RESULTS: Using the PstI/TaqI method of complexity reduction we created a rye diversity panel from DNA of 16 rye varieties and 15 rye inbred lines, including parents of a mapping population consisting of 82 recombinant inbred lines. The usefulness of a wheat diversity panel for identification of DArT markers for rye was also demonstrated. We identified 1022 clones that were polymorphic in the genotyped ILs and varieties and 1965 clones that differentiated the parental lines L318 and L9 and segregated in the mapping population. Hierarchical clustering and ordination analysis were performed based on the 1022 DArT markers to reveal genetic relationships between the rye varieties and inbred lines included in the study. Chromosomal location of 1872 DArT markers was determined using wheat-rye addition lines and 1818 DArT markers (among them 1181 unique, non-cosegregating) were placed on a genetic linkage map of the cross L318 × L9, providing an average density of one unique marker every 2.68 cM. This is the most saturated rye linkage map based solely on transferable markers available at the moment, providing rye breeders and researches with a better choice of markers and a higher probability of finding polymorphic markers in the region of interest. CONCLUSION: The Diversity Arrays Technology can be efficiently and effectively used for rye genome analyses - assessment of genetic similarity and linkage mapping. The 11520-clone rye genotyping panel with several thousand markers with determined chromosomal location and accessible through an inexpensive genotyping service is a valuable resource for studies on rye genome organization and in molecular breeding of the species.
format Text
id pubmed-2795769
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-27957692009-12-18 DArT markers for the rye genome - genetic diversity and mapping Bolibok-Brągoszewska, Hanna Heller-Uszyńska, Katarzyna Wenzl, Peter Uszyński, Grzegorz Kilian, Andrzej Rakoczy-Trojanowska, Monika BMC Genomics Research article BACKGROUND: Implementation of molecular breeding in rye (Secale cereale L.) improvement programs depends on the availability of high-density molecular linkage maps. However, the number of sequence-specific PCR-based markers available for the species is limited. Diversity Arrays Technology (DArT) is a microarray-based method allowing for detection of DNA polymorphism at several thousand loci in a single assay without relying on DNA sequence information. The objective of this study was the development and application of Diversity Arrays technology for rye. RESULTS: Using the PstI/TaqI method of complexity reduction we created a rye diversity panel from DNA of 16 rye varieties and 15 rye inbred lines, including parents of a mapping population consisting of 82 recombinant inbred lines. The usefulness of a wheat diversity panel for identification of DArT markers for rye was also demonstrated. We identified 1022 clones that were polymorphic in the genotyped ILs and varieties and 1965 clones that differentiated the parental lines L318 and L9 and segregated in the mapping population. Hierarchical clustering and ordination analysis were performed based on the 1022 DArT markers to reveal genetic relationships between the rye varieties and inbred lines included in the study. Chromosomal location of 1872 DArT markers was determined using wheat-rye addition lines and 1818 DArT markers (among them 1181 unique, non-cosegregating) were placed on a genetic linkage map of the cross L318 × L9, providing an average density of one unique marker every 2.68 cM. This is the most saturated rye linkage map based solely on transferable markers available at the moment, providing rye breeders and researches with a better choice of markers and a higher probability of finding polymorphic markers in the region of interest. CONCLUSION: The Diversity Arrays Technology can be efficiently and effectively used for rye genome analyses - assessment of genetic similarity and linkage mapping. The 11520-clone rye genotyping panel with several thousand markers with determined chromosomal location and accessible through an inexpensive genotyping service is a valuable resource for studies on rye genome organization and in molecular breeding of the species. BioMed Central 2009-12-03 /pmc/articles/PMC2795769/ /pubmed/19958552 http://dx.doi.org/10.1186/1471-2164-10-578 Text en Copyright ©2009 Bolibok-Brągoszewska et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research article
Bolibok-Brągoszewska, Hanna
Heller-Uszyńska, Katarzyna
Wenzl, Peter
Uszyński, Grzegorz
Kilian, Andrzej
Rakoczy-Trojanowska, Monika
DArT markers for the rye genome - genetic diversity and mapping
title DArT markers for the rye genome - genetic diversity and mapping
title_full DArT markers for the rye genome - genetic diversity and mapping
title_fullStr DArT markers for the rye genome - genetic diversity and mapping
title_full_unstemmed DArT markers for the rye genome - genetic diversity and mapping
title_short DArT markers for the rye genome - genetic diversity and mapping
title_sort dart markers for the rye genome - genetic diversity and mapping
topic Research article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795769/
https://www.ncbi.nlm.nih.gov/pubmed/19958552
http://dx.doi.org/10.1186/1471-2164-10-578
work_keys_str_mv AT bolibokbragoszewskahanna dartmarkersfortheryegenomegeneticdiversityandmapping
AT helleruszynskakatarzyna dartmarkersfortheryegenomegeneticdiversityandmapping
AT wenzlpeter dartmarkersfortheryegenomegeneticdiversityandmapping
AT uszynskigrzegorz dartmarkersfortheryegenomegeneticdiversityandmapping
AT kilianandrzej dartmarkersfortheryegenomegeneticdiversityandmapping
AT rakoczytrojanowskamonika dartmarkersfortheryegenomegeneticdiversityandmapping