Cargando…
AutoEPG: Software for the Analysis of Electrical Activity in the Microcircuit Underpinning Feeding Behaviour of Caenorhabditis elegans
BACKGROUND: The pharyngeal microcircuit of the nematode Caenorhabditis elegans serves as a model for analysing neural network activity and is amenable to electrophysiological recording techniques. One such technique is the electropharyngeogram (EPG) which has provided insight into the genetic basis...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795780/ https://www.ncbi.nlm.nih.gov/pubmed/20041123 http://dx.doi.org/10.1371/journal.pone.0008482 |
_version_ | 1782175451382284288 |
---|---|
author | Dillon, James Andrianakis, Ioannis Bull, Kate Glautier, Steve O'Connor, Vincent Holden-Dye, Lindy James, Christopher |
author_facet | Dillon, James Andrianakis, Ioannis Bull, Kate Glautier, Steve O'Connor, Vincent Holden-Dye, Lindy James, Christopher |
author_sort | Dillon, James |
collection | PubMed |
description | BACKGROUND: The pharyngeal microcircuit of the nematode Caenorhabditis elegans serves as a model for analysing neural network activity and is amenable to electrophysiological recording techniques. One such technique is the electropharyngeogram (EPG) which has provided insight into the genetic basis of feeding behaviour, neurotransmission and muscle excitability. However, the detailed manual analysis of the digital recordings necessary to identify subtle differences in activity that reflect modulatory changes within the underlying network is time consuming and low throughput. To address this we have developed an automated system for the high-throughput and discrete analysis of EPG recordings (AutoEPG). METHODOLOGY/PRINCIPAL FINDINGS: AutoEPG employs a tailor made signal processing algorithm that automatically detects different features of the EPG signal including those that report on the relaxation and contraction of the muscle and neuronal activity. Manual verification of the detection algorithm has demonstrated AutoEPG is capable of very high levels of accuracy. We have further validated the software by analysing existing mutant strains with known pharyngeal phenotypes detectable by the EPG. In doing so, we have more precisely defined an evolutionarily conserved role for the calcium-dependent potassium channel, SLO-1, in modulating the rhythmic activity of neural networks. CONCLUSIONS/SIGNIFICANCE: AutoEPG enables the consistent analysis of EPG recordings, significantly increases analysis throughput and allows the robust identification of subtle changes in the electrical activity of the pharyngeal nervous system. It is anticipated that AutoEPG will further add to the experimental tractability of the C. elegans pharynx as a model neural circuit. |
format | Text |
id | pubmed-2795780 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-27957802009-12-30 AutoEPG: Software for the Analysis of Electrical Activity in the Microcircuit Underpinning Feeding Behaviour of Caenorhabditis elegans Dillon, James Andrianakis, Ioannis Bull, Kate Glautier, Steve O'Connor, Vincent Holden-Dye, Lindy James, Christopher PLoS One Research Article BACKGROUND: The pharyngeal microcircuit of the nematode Caenorhabditis elegans serves as a model for analysing neural network activity and is amenable to electrophysiological recording techniques. One such technique is the electropharyngeogram (EPG) which has provided insight into the genetic basis of feeding behaviour, neurotransmission and muscle excitability. However, the detailed manual analysis of the digital recordings necessary to identify subtle differences in activity that reflect modulatory changes within the underlying network is time consuming and low throughput. To address this we have developed an automated system for the high-throughput and discrete analysis of EPG recordings (AutoEPG). METHODOLOGY/PRINCIPAL FINDINGS: AutoEPG employs a tailor made signal processing algorithm that automatically detects different features of the EPG signal including those that report on the relaxation and contraction of the muscle and neuronal activity. Manual verification of the detection algorithm has demonstrated AutoEPG is capable of very high levels of accuracy. We have further validated the software by analysing existing mutant strains with known pharyngeal phenotypes detectable by the EPG. In doing so, we have more precisely defined an evolutionarily conserved role for the calcium-dependent potassium channel, SLO-1, in modulating the rhythmic activity of neural networks. CONCLUSIONS/SIGNIFICANCE: AutoEPG enables the consistent analysis of EPG recordings, significantly increases analysis throughput and allows the robust identification of subtle changes in the electrical activity of the pharyngeal nervous system. It is anticipated that AutoEPG will further add to the experimental tractability of the C. elegans pharynx as a model neural circuit. Public Library of Science 2009-12-29 /pmc/articles/PMC2795780/ /pubmed/20041123 http://dx.doi.org/10.1371/journal.pone.0008482 Text en Dillon et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Dillon, James Andrianakis, Ioannis Bull, Kate Glautier, Steve O'Connor, Vincent Holden-Dye, Lindy James, Christopher AutoEPG: Software for the Analysis of Electrical Activity in the Microcircuit Underpinning Feeding Behaviour of Caenorhabditis elegans |
title | AutoEPG: Software for the Analysis of Electrical Activity in the Microcircuit Underpinning Feeding Behaviour of Caenorhabditis elegans
|
title_full | AutoEPG: Software for the Analysis of Electrical Activity in the Microcircuit Underpinning Feeding Behaviour of Caenorhabditis elegans
|
title_fullStr | AutoEPG: Software for the Analysis of Electrical Activity in the Microcircuit Underpinning Feeding Behaviour of Caenorhabditis elegans
|
title_full_unstemmed | AutoEPG: Software for the Analysis of Electrical Activity in the Microcircuit Underpinning Feeding Behaviour of Caenorhabditis elegans
|
title_short | AutoEPG: Software for the Analysis of Electrical Activity in the Microcircuit Underpinning Feeding Behaviour of Caenorhabditis elegans
|
title_sort | autoepg: software for the analysis of electrical activity in the microcircuit underpinning feeding behaviour of caenorhabditis elegans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795780/ https://www.ncbi.nlm.nih.gov/pubmed/20041123 http://dx.doi.org/10.1371/journal.pone.0008482 |
work_keys_str_mv | AT dillonjames autoepgsoftwarefortheanalysisofelectricalactivityinthemicrocircuitunderpinningfeedingbehaviourofcaenorhabditiselegans AT andrianakisioannis autoepgsoftwarefortheanalysisofelectricalactivityinthemicrocircuitunderpinningfeedingbehaviourofcaenorhabditiselegans AT bullkate autoepgsoftwarefortheanalysisofelectricalactivityinthemicrocircuitunderpinningfeedingbehaviourofcaenorhabditiselegans AT glautiersteve autoepgsoftwarefortheanalysisofelectricalactivityinthemicrocircuitunderpinningfeedingbehaviourofcaenorhabditiselegans AT oconnorvincent autoepgsoftwarefortheanalysisofelectricalactivityinthemicrocircuitunderpinningfeedingbehaviourofcaenorhabditiselegans AT holdendyelindy autoepgsoftwarefortheanalysisofelectricalactivityinthemicrocircuitunderpinningfeedingbehaviourofcaenorhabditiselegans AT jameschristopher autoepgsoftwarefortheanalysisofelectricalactivityinthemicrocircuitunderpinningfeedingbehaviourofcaenorhabditiselegans |