Cargando…
A principal-components-based clustering method to identify multiple variants associated with rheumatoid arthritis and arthritis-related autoantibodies
Multivariate techniques are an important area of investigation for studying contributions of multiple genetic variants to disease onset and pathology. We analyzed the Genetic Analysis Workshop 16 North American Rheumatoid Arthritis Consortium (NARAC) data using a principal-components analysis (PCA)...
Autores principales: | Black, Mary Helen, Watanabe, Richard M |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795902/ https://www.ncbi.nlm.nih.gov/pubmed/20017995 |
Ejemplares similares
-
Comparison of methods for correcting population stratification in a genome-wide association study of rheumatoid arthritis: principal-component analysis versus multidimensional scaling
por: Wang, Dai, et al.
Publicado: (2009) -
Principal-component-based population structure adjustment in the North American Rheumatoid Arthritis Consortium data: impact of single-nucleotide polymorphism set and analysis method
por: Peloso, Gina M, et al.
Publicado: (2009) -
Clustering and principal-components approach based on heritability for mapping multiple gene expressions
por: Wang, Yuanjia, et al.
Publicado: (2007) -
Identifying rheumatoid arthritis susceptibility genes using high-dimensional methods
por: Liang, Xueying, et al.
Publicado: (2009) -
Rheumatoid arthritis-associated gene-gene interaction network for rheumatoid arthritis candidate genes
por: Huang, Chien-Hsun, et al.
Publicado: (2009)