Cargando…
Two-stage joint selection method to identify candidate markers from genome-wide association studies
The interaction among multiple genes and environmental factors can affect an individual's susceptibility to disease. Some genes may not show strong marginal associations when they affect disease risk through interactions with other genes. As a result, these genes may not be identified by single...
Autores principales: | Wu, Zheyang, Aporntewan, Chatchawit, Ballard, David H, Lee, Ji Young, Lee, Joon Sang, Zhao, Hongyu |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795926/ https://www.ncbi.nlm.nih.gov/pubmed/20018019 |
Ejemplares similares
-
A pathway analysis applied to Genetic Analysis Workshop 16 genome-wide rheumatoid arthritis data
por: Ballard, David H, et al.
Publicado: (2009) -
Gene hunting of the Genetic Analysis Workshop 16 rheumatoid arthritis data using rough set theory
por: Aporntewan, Chatchawit, et al.
Publicado: (2009) -
Gene expression profiling identifies candidate biomarkers for active and latent tuberculosis
por: Lee, Shih-Wei, et al.
Publicado: (2016) -
Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests
por: Nguyen, Thanh-Tung, et al.
Publicado: (2015) -
Marker selection for whole-genome association studies with two-stage designs using dense single-nucleotide polymorphisms
por: Li, Jing
Publicado: (2007)