Cargando…
Detecting significant single-nucleotide polymorphisms in a rheumatoid arthritis study using random forests
Random forest is an efficient approach for investigating not only the effects of individual markers on a trait but also the effect of the interactions among the markers in genetic association studies. This approach is especially appealing for the analysis of genome-wide data, such as those obtained...
Autores principales: | Wang, Minghui, Chen, Xiang, Zhang, Meizhuo, Zhu, Wensheng, Cho, Kelly, Zhang, Heping |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795970/ https://www.ncbi.nlm.nih.gov/pubmed/20018063 |
Ejemplares similares
-
Memory management in genome-wide association studies
por: Chen, Xiang, et al.
Publicado: (2009) -
A genome-wide association analysis of Framingham Heart Study longitudinal data using multivariate adaptive splines
por: Zhu, Wensheng, et al.
Publicado: (2009) -
Classification of rheumatoid arthritis status with candidate gene and genome-wide single-nucleotide polymorphisms using random forests
por: Sun, Yan V, et al.
Publicado: (2007) -
Two-stage approach for identifying single-nucleotide polymorphisms associated with rheumatoid arthritis using random forests and Bayesian networks
por: Meng, Yan, et al.
Publicado: (2007) -
Evaluation of single-nucleotide polymorphism imputation using random forests
por: Schwarz, Daniel F, et al.
Publicado: (2009)