Cargando…
Selection of important variables by statistical learning in genome-wide association analysis
Genetic analysis of complex diseases demands novel analytical methods to interpret data collected on thousands of variables by genome-wide association studies. The complexity of such analysis is multiplied when one has to consider interaction effects, be they among the genetic variations (G × G) or...
Autores principales: | Yang, Wei (Will), Gu, C Charles |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795972/ https://www.ncbi.nlm.nih.gov/pubmed/20018065 |
Ejemplares similares
-
Genome-wide association analysis of GAW17 data using an empirical Bayes variable selection
por: Pungpapong, Vitara, et al.
Publicado: (2011) -
Application of an iterative Bayesian variable selection method in a genome-wide association study of rheumatoid arthritis
por: Kwon, Soonil, et al.
Publicado: (2007) -
Combining least absolute shrinkage and selection operator (LASSO) and principal-components analysis for detection of gene-gene interactions in genome-wide association studies
por: D'Angelo, Gina M, et al.
Publicado: (2009) -
Comparison between the stochastic search variable selection and the least absolute shrinkage and selection operator for genome-wide association studies of rheumatoid arthritis
por: Srivastava, Sudeep, et al.
Publicado: (2009) -
Genome-wide association and linkage analysis of quantitative traits: comparison of likelihood-ratio test and conditional score statistic
por: Hendricks, Audrey E, et al.
Publicado: (2009)