Cargando…

A pathway analysis applied to Genetic Analysis Workshop 16 genome-wide rheumatoid arthritis data

The identification of several hundred genomic regions affecting disease risk has proven the ability of genome-wide association studies have proven their ability to identify genetic contributors to disease. Currently, single-nucleotide polymorphism (SNP) association analysis is the most widely used m...

Descripción completa

Detalles Bibliográficos
Autores principales: Ballard, David H, Aporntewan, Chatchawit, Lee, Ji Young, Lee, Joon Sang, Wu, Zheyang, Zhao, Hongyu
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2795995/
https://www.ncbi.nlm.nih.gov/pubmed/20018088
Descripción
Sumario:The identification of several hundred genomic regions affecting disease risk has proven the ability of genome-wide association studies have proven their ability to identify genetic contributors to disease. Currently, single-nucleotide polymorphism (SNP) association analysis is the most widely used method of genome-wide association data, but recent research shows that multi-marker tests of association may provide greater power, especially when more than one mutation is present within a gene and the mutations are in low linkage disequilibrium with each other. Here we use a multi-marker association test based on regression to SNPs located within known genes to obtain a gene-level score of association. We then perform pathway analysis using this score as a measure of gene importance. We use two tests of pathway enrichment - a binomial test and a random set method. By utilizing publicly available gene and pathway information, we identify B cell, cytokine and inflammation response, and antigen presentation pathways as being associated with rheumatoid arthritis. These results confirm known biological mechanisms for auto-immunity disorders, of which rheumatoid arthritis is one.