Cargando…
A group bridge approach for variable selection
In multiple regression problems when covariates can be naturally grouped, it is important to carry out feature selection at the group and within-group individual variable levels simultaneously. The existing methods, including the lasso and group lasso, are designed for either variable selection or g...
Autores principales: | Huang, Jian, Ma, Shuange, Xie, Huiliang, Zhang, Cun-Hui |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2796848/ https://www.ncbi.nlm.nih.gov/pubmed/20037673 http://dx.doi.org/10.1093/biomet/asp020 |
Ejemplares similares
-
Wind Tunnel Measurements for Flutter of a Long-Afterbody Bridge Deck
por: Chen, Zeng-Shun, et al.
Publicado: (2017) -
Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD
por: Ogutu, Joseph O, et al.
Publicado: (2014) -
Punctured torus groups and 2-bridge knot groups
por: Akiyoshi, Hirotaka, et al.
Publicado: (2007) -
Inhibition activity of a disulfide-stabilized diabody against basic fibroblast growth factor in lung cancer
por: Cai, Yaxiong, et al.
Publicado: (2017) -
Toward a Monte Carlo approach to selecting climate variables in MaxEnt
por: Schnase, John L., et al.
Publicado: (2021)