Cargando…

Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy

JUSTIFICATION: Automatic brain tumor classification by MRS has been under development for more than a decade. Nonetheless, to our knowledge, there are no published evaluations of predictive models with unseen cases that are subsequently acquired in different centers. The multicenter eTUMOUR project...

Descripción completa

Detalles Bibliográficos
Autores principales: García-Gómez, Juan M., Luts, Jan, Julià-Sapé, Margarida, Krooshof, Patrick, Tortajada, Salvador, Robledo, Javier Vicente, Melssen, Willem, Fuster-García, Elies, Olier, Iván, Postma, Geert, Monleón, Daniel, Moreno-Torres, Àngel, Pujol, Jesús, Candiota, Ana-Paula, Martínez-Bisbal, M. Carmen, Suykens, Johan, Buydens, Lutgarde, Celda, Bernardo, Van Huffel, Sabine, Arús, Carles, Robles, Montserrat
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797843/
https://www.ncbi.nlm.nih.gov/pubmed/18989714
http://dx.doi.org/10.1007/s10334-008-0146-y
_version_ 1782175679951929344
author García-Gómez, Juan M.
Luts, Jan
Julià-Sapé, Margarida
Krooshof, Patrick
Tortajada, Salvador
Robledo, Javier Vicente
Melssen, Willem
Fuster-García, Elies
Olier, Iván
Postma, Geert
Monleón, Daniel
Moreno-Torres, Àngel
Pujol, Jesús
Candiota, Ana-Paula
Martínez-Bisbal, M. Carmen
Suykens, Johan
Buydens, Lutgarde
Celda, Bernardo
Van Huffel, Sabine
Arús, Carles
Robles, Montserrat
author_facet García-Gómez, Juan M.
Luts, Jan
Julià-Sapé, Margarida
Krooshof, Patrick
Tortajada, Salvador
Robledo, Javier Vicente
Melssen, Willem
Fuster-García, Elies
Olier, Iván
Postma, Geert
Monleón, Daniel
Moreno-Torres, Àngel
Pujol, Jesús
Candiota, Ana-Paula
Martínez-Bisbal, M. Carmen
Suykens, Johan
Buydens, Lutgarde
Celda, Bernardo
Van Huffel, Sabine
Arús, Carles
Robles, Montserrat
author_sort García-Gómez, Juan M.
collection PubMed
description JUSTIFICATION: Automatic brain tumor classification by MRS has been under development for more than a decade. Nonetheless, to our knowledge, there are no published evaluations of predictive models with unseen cases that are subsequently acquired in different centers. The multicenter eTUMOUR project (2004–2009), which builds upon previous expertise from the INTERPRET project (2000–2002) has allowed such an evaluation to take place. MATERIALS AND METHODS: A total of 253 pairwise classifiers for glioblastoma, meningioma, metastasis, and low-grade glial diagnosis were inferred based on 211 SV short TE INTERPRET MR spectra obtained at 1.5 T (PRESS or STEAM, 20–32 ms) and automatically pre-processed. Afterwards, the classifiers were tested with 97 spectra, which were subsequently compiled during eTUMOUR. RESULTS: In our results based on subsequently acquired spectra, accuracies of around 90% were achieved for most of the pairwise discrimination problems. The exception was for the glioblastoma versus metastasis discrimination, which was below 78%. A more clear definition of metastases may be obtained by other approaches, such as MRSI + MRI. CONCLUSIONS: The prediction of the tumor type of in-vivo MRS is possible using classifiers developed from previously acquired data, in different hospitals with different instrumentation under the same acquisition protocols. This methodology may find application for assisting in the diagnosis of new brain tumor cases and for the quality control of multicenter MRS databases.
format Text
id pubmed-2797843
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher Springer-Verlag
record_format MEDLINE/PubMed
spelling pubmed-27978432009-12-28 Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy García-Gómez, Juan M. Luts, Jan Julià-Sapé, Margarida Krooshof, Patrick Tortajada, Salvador Robledo, Javier Vicente Melssen, Willem Fuster-García, Elies Olier, Iván Postma, Geert Monleón, Daniel Moreno-Torres, Àngel Pujol, Jesús Candiota, Ana-Paula Martínez-Bisbal, M. Carmen Suykens, Johan Buydens, Lutgarde Celda, Bernardo Van Huffel, Sabine Arús, Carles Robles, Montserrat MAGMA Research Article JUSTIFICATION: Automatic brain tumor classification by MRS has been under development for more than a decade. Nonetheless, to our knowledge, there are no published evaluations of predictive models with unseen cases that are subsequently acquired in different centers. The multicenter eTUMOUR project (2004–2009), which builds upon previous expertise from the INTERPRET project (2000–2002) has allowed such an evaluation to take place. MATERIALS AND METHODS: A total of 253 pairwise classifiers for glioblastoma, meningioma, metastasis, and low-grade glial diagnosis were inferred based on 211 SV short TE INTERPRET MR spectra obtained at 1.5 T (PRESS or STEAM, 20–32 ms) and automatically pre-processed. Afterwards, the classifiers were tested with 97 spectra, which were subsequently compiled during eTUMOUR. RESULTS: In our results based on subsequently acquired spectra, accuracies of around 90% were achieved for most of the pairwise discrimination problems. The exception was for the glioblastoma versus metastasis discrimination, which was below 78%. A more clear definition of metastases may be obtained by other approaches, such as MRSI + MRI. CONCLUSIONS: The prediction of the tumor type of in-vivo MRS is possible using classifiers developed from previously acquired data, in different hospitals with different instrumentation under the same acquisition protocols. This methodology may find application for assisting in the diagnosis of new brain tumor cases and for the quality control of multicenter MRS databases. Springer-Verlag 2008-11-07 2009 /pmc/articles/PMC2797843/ /pubmed/18989714 http://dx.doi.org/10.1007/s10334-008-0146-y Text en © The Author(s) 2008 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
spellingShingle Research Article
García-Gómez, Juan M.
Luts, Jan
Julià-Sapé, Margarida
Krooshof, Patrick
Tortajada, Salvador
Robledo, Javier Vicente
Melssen, Willem
Fuster-García, Elies
Olier, Iván
Postma, Geert
Monleón, Daniel
Moreno-Torres, Àngel
Pujol, Jesús
Candiota, Ana-Paula
Martínez-Bisbal, M. Carmen
Suykens, Johan
Buydens, Lutgarde
Celda, Bernardo
Van Huffel, Sabine
Arús, Carles
Robles, Montserrat
Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy
title Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy
title_full Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy
title_fullStr Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy
title_full_unstemmed Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy
title_short Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy
title_sort multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797843/
https://www.ncbi.nlm.nih.gov/pubmed/18989714
http://dx.doi.org/10.1007/s10334-008-0146-y
work_keys_str_mv AT garciagomezjuanm multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT lutsjan multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT juliasapemargarida multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT krooshofpatrick multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT tortajadasalvador multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT robledojaviervicente multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT melssenwillem multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT fustergarciaelies multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT olierivan multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT postmageert multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT monleondaniel multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT morenotorresangel multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT pujoljesus multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT candiotaanapaula multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT martinezbisbalmcarmen multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT suykensjohan multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT buydenslutgarde multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT celdabernardo multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT vanhuffelsabine multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT aruscarles multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy
AT roblesmontserrat multiprojectmulticenterevaluationofautomaticbraintumorclassificationbymagneticresonancespectroscopy