Cargando…

On Association Coefficients for 2×2 Tables and Properties That Do Not Depend on the Marginal Distributions

We discuss properties that association coefficients may have in general, e.g., zero value under statistical independence, and we examine coefficients for 2×2 tables with respect to these properties. Furthermore, we study a family of coefficients that are linear transformations of the observed propor...

Descripción completa

Detalles Bibliográficos
Autor principal: Warrens, Matthijs J.
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798022/
https://www.ncbi.nlm.nih.gov/pubmed/20046834
http://dx.doi.org/10.1007/s11336-008-9070-3
_version_ 1782175707839856640
author Warrens, Matthijs J.
author_facet Warrens, Matthijs J.
author_sort Warrens, Matthijs J.
collection PubMed
description We discuss properties that association coefficients may have in general, e.g., zero value under statistical independence, and we examine coefficients for 2×2 tables with respect to these properties. Furthermore, we study a family of coefficients that are linear transformations of the observed proportion of agreement given the marginal probabilities. This family includes the phi coefficient and Cohen’s kappa. The main result is that the linear transformations that set the value under independence at zero and the maximum value at unity, transform all coefficients in this family into the same underlying coefficient. This coefficient happens to be Loevinger’s H.
format Text
id pubmed-2798022
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher Springer-Verlag
record_format MEDLINE/PubMed
spelling pubmed-27980222009-12-29 On Association Coefficients for 2×2 Tables and Properties That Do Not Depend on the Marginal Distributions Warrens, Matthijs J. Psychometrika Article We discuss properties that association coefficients may have in general, e.g., zero value under statistical independence, and we examine coefficients for 2×2 tables with respect to these properties. Furthermore, we study a family of coefficients that are linear transformations of the observed proportion of agreement given the marginal probabilities. This family includes the phi coefficient and Cohen’s kappa. The main result is that the linear transformations that set the value under independence at zero and the maximum value at unity, transform all coefficients in this family into the same underlying coefficient. This coefficient happens to be Loevinger’s H. Springer-Verlag 2008-07-23 2008 /pmc/articles/PMC2798022/ /pubmed/20046834 http://dx.doi.org/10.1007/s11336-008-9070-3 Text en © The Author(s) 2008 https://creativecommons.org/licenses/by-nc/4.0/This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
spellingShingle Article
Warrens, Matthijs J.
On Association Coefficients for 2×2 Tables and Properties That Do Not Depend on the Marginal Distributions
title On Association Coefficients for 2×2 Tables and Properties That Do Not Depend on the Marginal Distributions
title_full On Association Coefficients for 2×2 Tables and Properties That Do Not Depend on the Marginal Distributions
title_fullStr On Association Coefficients for 2×2 Tables and Properties That Do Not Depend on the Marginal Distributions
title_full_unstemmed On Association Coefficients for 2×2 Tables and Properties That Do Not Depend on the Marginal Distributions
title_short On Association Coefficients for 2×2 Tables and Properties That Do Not Depend on the Marginal Distributions
title_sort on association coefficients for 2×2 tables and properties that do not depend on the marginal distributions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798022/
https://www.ncbi.nlm.nih.gov/pubmed/20046834
http://dx.doi.org/10.1007/s11336-008-9070-3
work_keys_str_mv AT warrensmatthijsj onassociationcoefficientsfor22tablesandpropertiesthatdonotdependonthemarginaldistributions