Cargando…
Learning to reach by reinforcement learning using a receptive field based function approximation approach with continuous actions
Reinforcement learning methods can be used in robotics applications especially for specific target-oriented problems, for example the reward-based recalibration of goal directed actions. To this end still relatively large and continuous state-action spaces need to be efficiently handled. The goal of...
Autores principales: | Tamosiunaite, Minija, Asfour, Tamim, Wörgötter, Florentin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798030/ https://www.ncbi.nlm.nih.gov/pubmed/19229556 http://dx.doi.org/10.1007/s00422-009-0295-8 |
Ejemplares similares
-
Differential Hebbian learning with time-continuous signals for active noise reduction
por: Möller, Konstantin, et al.
Publicado: (2022) -
Erratum to: Self-influencing synaptic plasticity: recurrent changes of synaptic weights can lead to specific functional properties
por: Tamosiunaite, Minija, et al.
Publicado: (2010) -
Development of place cells by a simple model in a closed loop context
por: Kulvicius, Tomas, et al.
Publicado: (2007) -
Interpreting the decisions of CNNs via influence functions
por: Aamir, Aisha, et al.
Publicado: (2023) -
Path-finding in real and simulated rats: assessing the influence of path characteristics on navigation learning
por: Tamosiunaite, Minija, et al.
Publicado: (2008)