Cargando…
Techniques for temporal detection of neural sensitivity to external stimulation
We propose a simple measure of neural sensitivity for characterizing stimulus coding. Sensitivity is defined as the fraction of neurons that show positive responses to n stimuli out of a total of N. To determine a positive response, we propose two methods: Fisherian statistical testing and a data-dr...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798031/ https://www.ncbi.nlm.nih.gov/pubmed/19241090 http://dx.doi.org/10.1007/s00422-009-0297-6 |
Sumario: | We propose a simple measure of neural sensitivity for characterizing stimulus coding. Sensitivity is defined as the fraction of neurons that show positive responses to n stimuli out of a total of N. To determine a positive response, we propose two methods: Fisherian statistical testing and a data-driven Bayesian approach to determine the response probability of a neuron. The latter is non-parametric, data-driven, and captures a lower bound for the probability of neural responses to sensory stimulation. Both methods are compared with a standard test that assumes normal probability distributions. We applied the sensitivity estimation based on the proposed method to experimental data recorded from the mushroom body (MB) of locusts. We show that there is a broad range of sensitivity that the MB response sweeps during odor stimulation. The neurons are initially tuned to specific odors, but tend to demonstrate a generalist behavior towards the end of the stimulus period, meaning that the emphasis shifts from discrimination to feature learning. |
---|