Cargando…
Extracting non-linear integrate-and-fire models from experimental data using dynamic I–V curves
The dynamic I–V curve method was recently introduced for the efficient experimental generation of reduced neuron models. The method extracts the response properties of a neuron while it is subject to a naturalistic stimulus that mimics in vivo-like fluctuating synaptic drive. The resulting history-d...
Autores principales: | Badel, Laurent, Lefort, Sandrine, Berger, Thomas K., Petersen, Carl C. H., Gerstner, Wulfram, Richardson, Magnus J. E. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798053/ https://www.ncbi.nlm.nih.gov/pubmed/19011924 http://dx.doi.org/10.1007/s00422-008-0259-4 |
Ejemplares similares
-
Firing patterns in the adaptive exponential integrate-and-fire model
por: Naud, Richard, et al.
Publicado: (2008) -
Predicting neuronal activity with an adaptive exponential integrate-and-fire model
por: Marcille, Nicolas, et al.
Publicado: (2007) -
Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network
por: Gilra, Aditya, et al.
Publicado: (2017) -
The influence of structure on the response properties of biologically plausible neural network models
por: Tomm, Christian, et al.
Publicado: (2011) -
Cortical Dynamics in Presence of Assemblies of Densely Connected Weight-Hub Neurons
por: Setareh, Hesam, et al.
Publicado: (2017)