Cargando…

Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data

Object A novel method of estimating metabolite T(1) relaxation times using MR spectroscopic imaging (MRSI) is proposed. As opposed to conventional single-voxel metabolite T(1) estimation methods, this method investigates regional and gray matter (GM)/white matter (WM) differences in metabolite T(1)...

Descripción completa

Detalles Bibliográficos
Autores principales: Ratiney, H., Noworolski, S. M., Sdika, M., Srinivasan, R., Henry, R. G., Nelson, S. J., Pelletier, D.
Formato: Texto
Lenguaje:English
Publicado: Springer-Verlag 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798973/
https://www.ncbi.nlm.nih.gov/pubmed/17602253
http://dx.doi.org/10.1007/s10334-007-0076-0
_version_ 1782175753478078464
author Ratiney, H.
Noworolski, S. M.
Sdika, M.
Srinivasan, R.
Henry, R. G.
Nelson, S. J.
Pelletier, D.
author_facet Ratiney, H.
Noworolski, S. M.
Sdika, M.
Srinivasan, R.
Henry, R. G.
Nelson, S. J.
Pelletier, D.
author_sort Ratiney, H.
collection PubMed
description Object A novel method of estimating metabolite T(1) relaxation times using MR spectroscopic imaging (MRSI) is proposed. As opposed to conventional single-voxel metabolite T(1) estimation methods, this method investigates regional and gray matter (GM)/white matter (WM) differences in metabolite T(1) by taking advantage of the spatial distribution information provided by MRSI. Material and methods The method, validated by Monte Carlo studies, involves a voxel averaging to preserve the GM/WM distribution, a non-linear least squares fit of the metabolite T(1) and an estimation of its standard error by bootstrapping. It was applied in vivo to estimate the T(1) of N-acetyl compounds (NAA), choline, creatine and myo-inositol in eight normal volunteers, at 1.5 T, using a short echo time 2D-MRSI slice located above the ventricles. Results WM-T(1,NAA) was significantly (P < 0.05) longer in anterior regions compared to posterior regions of the brain. The anterior region showed a trend of a longer WM T(1) compared to GM for NAA, creatine and myo-Inositol. Lastly, accounting for the bootstrapped standard error estimate in a group mean T(1) calculation yielded a more accurate T(1) estimation. Conclusion The method successfully measured in vivo metabolite T(1) using MRSI and can now be applied to diseased brain.
format Text
id pubmed-2798973
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Springer-Verlag
record_format MEDLINE/PubMed
spelling pubmed-27989732010-01-15 Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data Ratiney, H. Noworolski, S. M. Sdika, M. Srinivasan, R. Henry, R. G. Nelson, S. J. Pelletier, D. MAGMA Research Article Object A novel method of estimating metabolite T(1) relaxation times using MR spectroscopic imaging (MRSI) is proposed. As opposed to conventional single-voxel metabolite T(1) estimation methods, this method investigates regional and gray matter (GM)/white matter (WM) differences in metabolite T(1) by taking advantage of the spatial distribution information provided by MRSI. Material and methods The method, validated by Monte Carlo studies, involves a voxel averaging to preserve the GM/WM distribution, a non-linear least squares fit of the metabolite T(1) and an estimation of its standard error by bootstrapping. It was applied in vivo to estimate the T(1) of N-acetyl compounds (NAA), choline, creatine and myo-inositol in eight normal volunteers, at 1.5 T, using a short echo time 2D-MRSI slice located above the ventricles. Results WM-T(1,NAA) was significantly (P < 0.05) longer in anterior regions compared to posterior regions of the brain. The anterior region showed a trend of a longer WM T(1) compared to GM for NAA, creatine and myo-Inositol. Lastly, accounting for the bootstrapped standard error estimate in a group mean T(1) calculation yielded a more accurate T(1) estimation. Conclusion The method successfully measured in vivo metabolite T(1) using MRSI and can now be applied to diseased brain. Springer-Verlag 2007-06-30 2007-06 /pmc/articles/PMC2798973/ /pubmed/17602253 http://dx.doi.org/10.1007/s10334-007-0076-0 Text en © ESMRMB 2007
spellingShingle Research Article
Ratiney, H.
Noworolski, S. M.
Sdika, M.
Srinivasan, R.
Henry, R. G.
Nelson, S. J.
Pelletier, D.
Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data
title Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data
title_full Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data
title_fullStr Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data
title_full_unstemmed Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data
title_short Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data
title_sort estimation of metabolite t(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798973/
https://www.ncbi.nlm.nih.gov/pubmed/17602253
http://dx.doi.org/10.1007/s10334-007-0076-0
work_keys_str_mv AT ratineyh estimationofmetabolitet1relaxationtimesusingtissuespecificanalysissignalaveragingandbootstrappingfrommagneticresonancespectroscopicimagingdata
AT noworolskism estimationofmetabolitet1relaxationtimesusingtissuespecificanalysissignalaveragingandbootstrappingfrommagneticresonancespectroscopicimagingdata
AT sdikam estimationofmetabolitet1relaxationtimesusingtissuespecificanalysissignalaveragingandbootstrappingfrommagneticresonancespectroscopicimagingdata
AT srinivasanr estimationofmetabolitet1relaxationtimesusingtissuespecificanalysissignalaveragingandbootstrappingfrommagneticresonancespectroscopicimagingdata
AT henryrg estimationofmetabolitet1relaxationtimesusingtissuespecificanalysissignalaveragingandbootstrappingfrommagneticresonancespectroscopicimagingdata
AT nelsonsj estimationofmetabolitet1relaxationtimesusingtissuespecificanalysissignalaveragingandbootstrappingfrommagneticresonancespectroscopicimagingdata
AT pelletierd estimationofmetabolitet1relaxationtimesusingtissuespecificanalysissignalaveragingandbootstrappingfrommagneticresonancespectroscopicimagingdata