Cargando…
Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data
Object A novel method of estimating metabolite T(1) relaxation times using MR spectroscopic imaging (MRSI) is proposed. As opposed to conventional single-voxel metabolite T(1) estimation methods, this method investigates regional and gray matter (GM)/white matter (WM) differences in metabolite T(1)...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798973/ https://www.ncbi.nlm.nih.gov/pubmed/17602253 http://dx.doi.org/10.1007/s10334-007-0076-0 |
_version_ | 1782175753478078464 |
---|---|
author | Ratiney, H. Noworolski, S. M. Sdika, M. Srinivasan, R. Henry, R. G. Nelson, S. J. Pelletier, D. |
author_facet | Ratiney, H. Noworolski, S. M. Sdika, M. Srinivasan, R. Henry, R. G. Nelson, S. J. Pelletier, D. |
author_sort | Ratiney, H. |
collection | PubMed |
description | Object A novel method of estimating metabolite T(1) relaxation times using MR spectroscopic imaging (MRSI) is proposed. As opposed to conventional single-voxel metabolite T(1) estimation methods, this method investigates regional and gray matter (GM)/white matter (WM) differences in metabolite T(1) by taking advantage of the spatial distribution information provided by MRSI. Material and methods The method, validated by Monte Carlo studies, involves a voxel averaging to preserve the GM/WM distribution, a non-linear least squares fit of the metabolite T(1) and an estimation of its standard error by bootstrapping. It was applied in vivo to estimate the T(1) of N-acetyl compounds (NAA), choline, creatine and myo-inositol in eight normal volunteers, at 1.5 T, using a short echo time 2D-MRSI slice located above the ventricles. Results WM-T(1,NAA) was significantly (P < 0.05) longer in anterior regions compared to posterior regions of the brain. The anterior region showed a trend of a longer WM T(1) compared to GM for NAA, creatine and myo-Inositol. Lastly, accounting for the bootstrapped standard error estimate in a group mean T(1) calculation yielded a more accurate T(1) estimation. Conclusion The method successfully measured in vivo metabolite T(1) using MRSI and can now be applied to diseased brain. |
format | Text |
id | pubmed-2798973 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2007 |
publisher | Springer-Verlag |
record_format | MEDLINE/PubMed |
spelling | pubmed-27989732010-01-15 Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data Ratiney, H. Noworolski, S. M. Sdika, M. Srinivasan, R. Henry, R. G. Nelson, S. J. Pelletier, D. MAGMA Research Article Object A novel method of estimating metabolite T(1) relaxation times using MR spectroscopic imaging (MRSI) is proposed. As opposed to conventional single-voxel metabolite T(1) estimation methods, this method investigates regional and gray matter (GM)/white matter (WM) differences in metabolite T(1) by taking advantage of the spatial distribution information provided by MRSI. Material and methods The method, validated by Monte Carlo studies, involves a voxel averaging to preserve the GM/WM distribution, a non-linear least squares fit of the metabolite T(1) and an estimation of its standard error by bootstrapping. It was applied in vivo to estimate the T(1) of N-acetyl compounds (NAA), choline, creatine and myo-inositol in eight normal volunteers, at 1.5 T, using a short echo time 2D-MRSI slice located above the ventricles. Results WM-T(1,NAA) was significantly (P < 0.05) longer in anterior regions compared to posterior regions of the brain. The anterior region showed a trend of a longer WM T(1) compared to GM for NAA, creatine and myo-Inositol. Lastly, accounting for the bootstrapped standard error estimate in a group mean T(1) calculation yielded a more accurate T(1) estimation. Conclusion The method successfully measured in vivo metabolite T(1) using MRSI and can now be applied to diseased brain. Springer-Verlag 2007-06-30 2007-06 /pmc/articles/PMC2798973/ /pubmed/17602253 http://dx.doi.org/10.1007/s10334-007-0076-0 Text en © ESMRMB 2007 |
spellingShingle | Research Article Ratiney, H. Noworolski, S. M. Sdika, M. Srinivasan, R. Henry, R. G. Nelson, S. J. Pelletier, D. Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data |
title | Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data |
title_full | Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data |
title_fullStr | Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data |
title_full_unstemmed | Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data |
title_short | Estimation of metabolite T(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data |
title_sort | estimation of metabolite t(1) relaxation times using tissue specific analysis, signal averaging and bootstrapping from magnetic resonance spectroscopic imaging data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798973/ https://www.ncbi.nlm.nih.gov/pubmed/17602253 http://dx.doi.org/10.1007/s10334-007-0076-0 |
work_keys_str_mv | AT ratineyh estimationofmetabolitet1relaxationtimesusingtissuespecificanalysissignalaveragingandbootstrappingfrommagneticresonancespectroscopicimagingdata AT noworolskism estimationofmetabolitet1relaxationtimesusingtissuespecificanalysissignalaveragingandbootstrappingfrommagneticresonancespectroscopicimagingdata AT sdikam estimationofmetabolitet1relaxationtimesusingtissuespecificanalysissignalaveragingandbootstrappingfrommagneticresonancespectroscopicimagingdata AT srinivasanr estimationofmetabolitet1relaxationtimesusingtissuespecificanalysissignalaveragingandbootstrappingfrommagneticresonancespectroscopicimagingdata AT henryrg estimationofmetabolitet1relaxationtimesusingtissuespecificanalysissignalaveragingandbootstrappingfrommagneticresonancespectroscopicimagingdata AT nelsonsj estimationofmetabolitet1relaxationtimesusingtissuespecificanalysissignalaveragingandbootstrappingfrommagneticresonancespectroscopicimagingdata AT pelletierd estimationofmetabolitet1relaxationtimesusingtissuespecificanalysissignalaveragingandbootstrappingfrommagneticresonancespectroscopicimagingdata |