Cargando…

Nanotechnology and in Situ Remediation: A Review of the Benefits and Potential Risks

OBJECTIVE: Although industrial sectors involving semiconductors; memory and storage technologies; display, optical, and photonic technologies; energy; biotechnology; and health care produce the most products that contain nanomaterials, nanotechnology is also used as an environmental technology to pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Karn, Barbara, Kuiken, Todd, Otto, Martha
Formato: Texto
Lenguaje:English
Publicado: National Institute of Environmental Health Sciences 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799454/
https://www.ncbi.nlm.nih.gov/pubmed/20049198
http://dx.doi.org/10.1289/ehp.0900793
Descripción
Sumario:OBJECTIVE: Although industrial sectors involving semiconductors; memory and storage technologies; display, optical, and photonic technologies; energy; biotechnology; and health care produce the most products that contain nanomaterials, nanotechnology is also used as an environmental technology to protect the environment through pollution prevention, treatment, and cleanup. In this review, we focus on environmental cleanup and provide a background and overview of current practice; research findings; societal issues; potential environment, health, and safety implications; and future directions for nanoremediation. We do not present an exhaustive review of chemistry/engineering methods of the technology but rather an introduction and summary of the applications of nanotechnology in remediation. We also discuss nanoscale zerovalent iron in detail. DATA SOURCES: We searched the Web of Science for research studies and accessed recent publicly available reports from the U.S. Environmental Protection Agency and other agencies and organizations that addressed the applications and implications associated with nanoremediation techniques. We also conducted personal interviews with practitioners about specific site remediations. DATA SYNTHESIS: We aggregated information from 45 sites, a representative portion of the total projects under way, to show nanomaterials used, types of pollutants addressed, and organizations responsible for each site. CONCLUSIONS: Nanoremediation has the potential not only to reduce the overall costs of cleaning up large-scale contaminated sites but also to reduce cleanup time, eliminate the need for treatment and disposal of contaminated soil, and reduce some contaminant concentrations to near zero—all in situ. Proper evaluation of nanoremediation, particularly full-scale ecosystem-wide studies, needs to be conducted to prevent any potential adverse environmental impacts.