Cargando…
Comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data
BACKGROUND: More studies based on gene expression data have been reported in great detail, however, one major challenge for the methodologists is the choice of classification methods. The main purpose of this research was to compare the performance of linear discriminant analysis (LDA) and its modif...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800110/ https://www.ncbi.nlm.nih.gov/pubmed/20003274 http://dx.doi.org/10.1186/1756-9966-28-149 |
_version_ | 1782175839302975488 |
---|---|
author | Huang, Desheng Quan, Yu He, Miao Zhou, Baosen |
author_facet | Huang, Desheng Quan, Yu He, Miao Zhou, Baosen |
author_sort | Huang, Desheng |
collection | PubMed |
description | BACKGROUND: More studies based on gene expression data have been reported in great detail, however, one major challenge for the methodologists is the choice of classification methods. The main purpose of this research was to compare the performance of linear discriminant analysis (LDA) and its modification methods for the classification of cancer based on gene expression data. METHODS: The classification performance of linear discriminant analysis (LDA) and its modification methods was evaluated by applying these methods to six public cancer gene expression datasets. These methods included linear discriminant analysis (LDA), prediction analysis for microarrays (PAM), shrinkage centroid regularized discriminant analysis (SCRDA), shrinkage linear discriminant analysis (SLDA) and shrinkage diagonal discriminant analysis (SDDA). The procedures were performed by software R 2.80. RESULTS: PAM picked out fewer feature genes than other methods from most datasets except from Brain dataset. For the two methods of shrinkage discriminant analysis, SLDA selected more genes than SDDA from most datasets except from 2-class lung cancer dataset. When comparing SLDA with SCRDA, SLDA selected more genes than SCRDA from 2-class lung cancer, SRBCT and Brain dataset, the result was opposite for the rest datasets. The average test error of LDA modification methods was lower than LDA method. CONCLUSIONS: The classification performance of LDA modification methods was superior to that of traditional LDA with respect to the average error and there was no significant difference between theses modification methods. |
format | Text |
id | pubmed-2800110 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28001102009-12-31 Comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data Huang, Desheng Quan, Yu He, Miao Zhou, Baosen J Exp Clin Cancer Res Research BACKGROUND: More studies based on gene expression data have been reported in great detail, however, one major challenge for the methodologists is the choice of classification methods. The main purpose of this research was to compare the performance of linear discriminant analysis (LDA) and its modification methods for the classification of cancer based on gene expression data. METHODS: The classification performance of linear discriminant analysis (LDA) and its modification methods was evaluated by applying these methods to six public cancer gene expression datasets. These methods included linear discriminant analysis (LDA), prediction analysis for microarrays (PAM), shrinkage centroid regularized discriminant analysis (SCRDA), shrinkage linear discriminant analysis (SLDA) and shrinkage diagonal discriminant analysis (SDDA). The procedures were performed by software R 2.80. RESULTS: PAM picked out fewer feature genes than other methods from most datasets except from Brain dataset. For the two methods of shrinkage discriminant analysis, SLDA selected more genes than SDDA from most datasets except from 2-class lung cancer dataset. When comparing SLDA with SCRDA, SLDA selected more genes than SCRDA from 2-class lung cancer, SRBCT and Brain dataset, the result was opposite for the rest datasets. The average test error of LDA modification methods was lower than LDA method. CONCLUSIONS: The classification performance of LDA modification methods was superior to that of traditional LDA with respect to the average error and there was no significant difference between theses modification methods. BioMed Central 2009-12-10 /pmc/articles/PMC2800110/ /pubmed/20003274 http://dx.doi.org/10.1186/1756-9966-28-149 Text en Copyright ©2009 Huang et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Huang, Desheng Quan, Yu He, Miao Zhou, Baosen Comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data |
title | Comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data |
title_full | Comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data |
title_fullStr | Comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data |
title_full_unstemmed | Comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data |
title_short | Comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data |
title_sort | comparison of linear discriminant analysis methods for the classification of cancer based on gene expression data |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800110/ https://www.ncbi.nlm.nih.gov/pubmed/20003274 http://dx.doi.org/10.1186/1756-9966-28-149 |
work_keys_str_mv | AT huangdesheng comparisonoflineardiscriminantanalysismethodsfortheclassificationofcancerbasedongeneexpressiondata AT quanyu comparisonoflineardiscriminantanalysismethodsfortheclassificationofcancerbasedongeneexpressiondata AT hemiao comparisonoflineardiscriminantanalysismethodsfortheclassificationofcancerbasedongeneexpressiondata AT zhoubaosen comparisonoflineardiscriminantanalysismethodsfortheclassificationofcancerbasedongeneexpressiondata |