Cargando…
Varying-coefficient models for longitudinal processes with continuous-time informative dropout
Dropout is a common occurrence in longitudinal studies. Building upon the pattern-mixture modeling approach within the Bayesian paradigm, we propose a general framework of varying-coefficient models for longitudinal data with informative dropout, where measurement times can be irregular and dropout...
Autores principales: | Su, Li, Hogan, Joseph W. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800163/ https://www.ncbi.nlm.nih.gov/pubmed/19837655 http://dx.doi.org/10.1093/biostatistics/kxp040 |
Ejemplares similares
-
A marginalized conditional linear model for longitudinal binary data when informative dropout occurs in continuous time
por: Su, Li
Publicado: (2012) -
A Bayesian natural cubic B-spline varying coefficient method for non-ignorable dropout
por: Moore, Camille M., et al.
Publicado: (2020) -
Accommodating informative dropout and death: a joint modelling approach for longitudinal and semicompeting risks data
por: Li, Qiuju, et al.
Publicado: (2017) -
Methods for handling longitudinal outcome processes truncated by dropout and death
por: Wen, Lan, et al.
Publicado: (2018) -
Quantile estimation of semiparametric model with time-varying coefficients for panel count data
por: Wang, Yijun, et al.
Publicado: (2021)