Cargando…
PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data
High-throughput oligonucleotide microarrays are commonly employed to investigate genetic disease, including cancer. The algorithms employed to extract genotypes and copy number variation function optimally for diploid genomes usually associated with inherited disease. However, cancer genomes are ane...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800165/ https://www.ncbi.nlm.nih.gov/pubmed/19837654 http://dx.doi.org/10.1093/biostatistics/kxp045 |
_version_ | 1782175843845406720 |
---|---|
author | Greenman, Chris D. Bignell, Graham Butler, Adam Edkins, Sarah Hinton, Jon Beare, Dave Swamy, Sajani Santarius, Thomas Chen, Lina Widaa, Sara Futreal, P. Andy Stratton, Michael R. |
author_facet | Greenman, Chris D. Bignell, Graham Butler, Adam Edkins, Sarah Hinton, Jon Beare, Dave Swamy, Sajani Santarius, Thomas Chen, Lina Widaa, Sara Futreal, P. Andy Stratton, Michael R. |
author_sort | Greenman, Chris D. |
collection | PubMed |
description | High-throughput oligonucleotide microarrays are commonly employed to investigate genetic disease, including cancer. The algorithms employed to extract genotypes and copy number variation function optimally for diploid genomes usually associated with inherited disease. However, cancer genomes are aneuploid in nature leading to systematic errors when using these techniques. We introduce a preprocessing transformation and hidden Markov model algorithm bespoke to cancer. This produces genotype classification, specification of regions of loss of heterozygosity, and absolute allelic copy number segmentation. Accurate prediction is demonstrated with a combination of independent experimental techniques. These methods are exemplified with affymetrix genome-wide SNP6.0 data from 755 cancer cell lines, enabling inference upon a number of features of biological interest. These data and the coded algorithm are freely available for download. |
format | Text |
id | pubmed-2800165 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-28001652010-01-01 PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data Greenman, Chris D. Bignell, Graham Butler, Adam Edkins, Sarah Hinton, Jon Beare, Dave Swamy, Sajani Santarius, Thomas Chen, Lina Widaa, Sara Futreal, P. Andy Stratton, Michael R. Biostatistics Articles High-throughput oligonucleotide microarrays are commonly employed to investigate genetic disease, including cancer. The algorithms employed to extract genotypes and copy number variation function optimally for diploid genomes usually associated with inherited disease. However, cancer genomes are aneuploid in nature leading to systematic errors when using these techniques. We introduce a preprocessing transformation and hidden Markov model algorithm bespoke to cancer. This produces genotype classification, specification of regions of loss of heterozygosity, and absolute allelic copy number segmentation. Accurate prediction is demonstrated with a combination of independent experimental techniques. These methods are exemplified with affymetrix genome-wide SNP6.0 data from 755 cancer cell lines, enabling inference upon a number of features of biological interest. These data and the coded algorithm are freely available for download. Oxford University Press 2010-01 2009-10-15 /pmc/articles/PMC2800165/ /pubmed/19837654 http://dx.doi.org/10.1093/biostatistics/kxp045 Text en © 2009 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Greenman, Chris D. Bignell, Graham Butler, Adam Edkins, Sarah Hinton, Jon Beare, Dave Swamy, Sajani Santarius, Thomas Chen, Lina Widaa, Sara Futreal, P. Andy Stratton, Michael R. PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data |
title | PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data |
title_full | PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data |
title_fullStr | PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data |
title_full_unstemmed | PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data |
title_short | PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data |
title_sort | picnic: an algorithm to predict absolute allelic copy number variation with microarray cancer data |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800165/ https://www.ncbi.nlm.nih.gov/pubmed/19837654 http://dx.doi.org/10.1093/biostatistics/kxp045 |
work_keys_str_mv | AT greenmanchrisd picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata AT bignellgraham picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata AT butleradam picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata AT edkinssarah picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata AT hintonjon picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata AT bearedave picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata AT swamysajani picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata AT santariusthomas picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata AT chenlina picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata AT widaasara picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata AT futrealpandy picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata AT strattonmichaelr picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata |