Cargando…

PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data

High-throughput oligonucleotide microarrays are commonly employed to investigate genetic disease, including cancer. The algorithms employed to extract genotypes and copy number variation function optimally for diploid genomes usually associated with inherited disease. However, cancer genomes are ane...

Descripción completa

Detalles Bibliográficos
Autores principales: Greenman, Chris D., Bignell, Graham, Butler, Adam, Edkins, Sarah, Hinton, Jon, Beare, Dave, Swamy, Sajani, Santarius, Thomas, Chen, Lina, Widaa, Sara, Futreal, P. Andy, Stratton, Michael R.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800165/
https://www.ncbi.nlm.nih.gov/pubmed/19837654
http://dx.doi.org/10.1093/biostatistics/kxp045
_version_ 1782175843845406720
author Greenman, Chris D.
Bignell, Graham
Butler, Adam
Edkins, Sarah
Hinton, Jon
Beare, Dave
Swamy, Sajani
Santarius, Thomas
Chen, Lina
Widaa, Sara
Futreal, P. Andy
Stratton, Michael R.
author_facet Greenman, Chris D.
Bignell, Graham
Butler, Adam
Edkins, Sarah
Hinton, Jon
Beare, Dave
Swamy, Sajani
Santarius, Thomas
Chen, Lina
Widaa, Sara
Futreal, P. Andy
Stratton, Michael R.
author_sort Greenman, Chris D.
collection PubMed
description High-throughput oligonucleotide microarrays are commonly employed to investigate genetic disease, including cancer. The algorithms employed to extract genotypes and copy number variation function optimally for diploid genomes usually associated with inherited disease. However, cancer genomes are aneuploid in nature leading to systematic errors when using these techniques. We introduce a preprocessing transformation and hidden Markov model algorithm bespoke to cancer. This produces genotype classification, specification of regions of loss of heterozygosity, and absolute allelic copy number segmentation. Accurate prediction is demonstrated with a combination of independent experimental techniques. These methods are exemplified with affymetrix genome-wide SNP6.0 data from 755 cancer cell lines, enabling inference upon a number of features of biological interest. These data and the coded algorithm are freely available for download.
format Text
id pubmed-2800165
institution National Center for Biotechnology Information
language English
publishDate 2010
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-28001652010-01-01 PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data Greenman, Chris D. Bignell, Graham Butler, Adam Edkins, Sarah Hinton, Jon Beare, Dave Swamy, Sajani Santarius, Thomas Chen, Lina Widaa, Sara Futreal, P. Andy Stratton, Michael R. Biostatistics Articles High-throughput oligonucleotide microarrays are commonly employed to investigate genetic disease, including cancer. The algorithms employed to extract genotypes and copy number variation function optimally for diploid genomes usually associated with inherited disease. However, cancer genomes are aneuploid in nature leading to systematic errors when using these techniques. We introduce a preprocessing transformation and hidden Markov model algorithm bespoke to cancer. This produces genotype classification, specification of regions of loss of heterozygosity, and absolute allelic copy number segmentation. Accurate prediction is demonstrated with a combination of independent experimental techniques. These methods are exemplified with affymetrix genome-wide SNP6.0 data from 755 cancer cell lines, enabling inference upon a number of features of biological interest. These data and the coded algorithm are freely available for download. Oxford University Press 2010-01 2009-10-15 /pmc/articles/PMC2800165/ /pubmed/19837654 http://dx.doi.org/10.1093/biostatistics/kxp045 Text en © 2009 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Articles
Greenman, Chris D.
Bignell, Graham
Butler, Adam
Edkins, Sarah
Hinton, Jon
Beare, Dave
Swamy, Sajani
Santarius, Thomas
Chen, Lina
Widaa, Sara
Futreal, P. Andy
Stratton, Michael R.
PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data
title PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data
title_full PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data
title_fullStr PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data
title_full_unstemmed PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data
title_short PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data
title_sort picnic: an algorithm to predict absolute allelic copy number variation with microarray cancer data
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800165/
https://www.ncbi.nlm.nih.gov/pubmed/19837654
http://dx.doi.org/10.1093/biostatistics/kxp045
work_keys_str_mv AT greenmanchrisd picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata
AT bignellgraham picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata
AT butleradam picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata
AT edkinssarah picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata
AT hintonjon picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata
AT bearedave picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata
AT swamysajani picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata
AT santariusthomas picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata
AT chenlina picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata
AT widaasara picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata
AT futrealpandy picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata
AT strattonmichaelr picnicanalgorithmtopredictabsolutealleliccopynumbervariationwithmicroarraycancerdata