Cargando…

The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells

Tumor cells exhibit at least two distinct modes of migration when invading the 3D environment. A single tumor cell’s invasive strategy follows either mesenchymal or amoeboid patterns. Certain cell types can use both modes of invasiveness and undergo transitions between them. This work outlines the s...

Descripción completa

Detalles Bibliográficos
Autores principales: Paňková, K., Rösel, D., Novotný, M., Brábek, Jan
Formato: Texto
Lenguaje:English
Publicado: SP Birkhäuser Verlag Basel 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2801846/
https://www.ncbi.nlm.nih.gov/pubmed/19707854
http://dx.doi.org/10.1007/s00018-009-0132-1
Descripción
Sumario:Tumor cells exhibit at least two distinct modes of migration when invading the 3D environment. A single tumor cell’s invasive strategy follows either mesenchymal or amoeboid patterns. Certain cell types can use both modes of invasiveness and undergo transitions between them. This work outlines the signaling pathways involved in mesenchymal and amoeboid types of tumor cell motility and summarizes the molecular mechanisms that are involved in transitions between them. The focus is on the signaling of the Rho family of small GTPases that regulate the cytoskeleton-dependent processes taking place during the cell migration. The multiple interactions among the Rho family of proteins, their regulators and effectors are thought to be the key determinants of the particular type of invasiveness. Mesenchymal and amoeboid invasive strategies display different adhesive and proteolytical interactions with the surrounding matrix and the alterations influencing these interactions can also lead to the transitions.