Cargando…

A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish

Barrier structures (e.g. epithelia around tissues, plasma membranes around cells) are required for internal homeostasis and protection from pathogens. Wound detection and healing represent a dormant morphogenetic program that can be rapidly executed to restore barrier integrity and tissue homeostasi...

Descripción completa

Detalles Bibliográficos
Autores principales: Niethammer, Philipp, Grabher, Clemens, Look, A. Thomas, Mitchison, Timothy J.
Formato: Texto
Lenguaje:English
Publicado: 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2803098/
https://www.ncbi.nlm.nih.gov/pubmed/19494811
http://dx.doi.org/10.1038/nature08119
Descripción
Sumario:Barrier structures (e.g. epithelia around tissues, plasma membranes around cells) are required for internal homeostasis and protection from pathogens. Wound detection and healing represent a dormant morphogenetic program that can be rapidly executed to restore barrier integrity and tissue homeostasis. In animals, initial steps include recruitment of leukocytes to the site of injury across distances of hundreds of micrometers within minutes of wounding. The spatial signals that direct this immediate tissue response are unknown. Due to their fast diffusion and versatile biological activities, reactive oxygen species (ROS), including hydrogen peroxide (H(2)O(2)), are interesting candidates for wound-to-leukocyte signalling. We probed the role of H(2)O(2) during the early events of wound responses in zebrafish larvae expressing a genetically encoded H(2)O(2) sensor1. This reporter revealed a sustained rise in H(2)O(2) concentration at the wound margin, starting ∼3 min after wounding and peaking at ∼20 min, which extended ∼100−200 μm into the tail fin epithelium as a decreasing concentration gradient. Using pharmacological and genetic inhibition, we show that this gradient is created by Dual oxidase (Duox), and that it is required for rapid recruitment of leukocytes to the wound. This is the first observation of a tissue-scale H(2)O(2) pattern, and the first evidence that H(2)O(2) signals to leukocytes in tissues, in addition to its known antiseptic role.