Cargando…

Target prediction and a statistical sampling algorithm for RNA–RNA interaction

Motivation: It has been proven that the accessibility of the target sites has a critical influence on RNA–RNA binding, in general and the specificity and efficiency of miRNAs and siRNAs, in particular. Recently, O(N(6)) time and O(N(4)) space dynamic programming (DP) algorithms have become available...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Fenix W. D., Qin, Jing, Reidys, Christian M., Stadler, Peter F.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804298/
https://www.ncbi.nlm.nih.gov/pubmed/19910305
http://dx.doi.org/10.1093/bioinformatics/btp635
Descripción
Sumario:Motivation: It has been proven that the accessibility of the target sites has a critical influence on RNA–RNA binding, in general and the specificity and efficiency of miRNAs and siRNAs, in particular. Recently, O(N(6)) time and O(N(4)) space dynamic programming (DP) algorithms have become available that compute the partition function of RNA–RNA interaction complexes, thereby providing detailed insights into their thermodynamic properties. Results: Modifications to the grammars underlying earlier approaches enables the calculation of interaction probabilities for any given interval on the target RNA. The computation of the ‘hybrid probabilities’ is complemented by a stochastic sampling algorithm that produces a Boltzmann weighted ensemble of RNA–RNA interaction structures. The sampling of k structures requires only negligible additional memory resources and runs in O(k·N(3)). Availability: The algorithms described here are implemented in C as part of the rip package. The source code of rip2 can be downloaded from http://www.combinatorics.cn/cbpc/rip.html and http://www.bioinf.uni-leipzig.de/Software/rip.html. Contact: duck@santafe.edu Supplementary information: Supplementary data are available at Bioinformatics online.