Cargando…
Correction: Spike-Based Reinforcement Learning in Continuous State and Action Space: When Policy Gradient Methods Fail
Autores principales: | Vasilaki, Eleni, Frémaux, Nicolas, Urbanczik, Robert, Senn, Walter, Gerstner, Wulfram |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804701/ http://dx.doi.org/10.1371/annotation/307ea250-3792-4ceb-b905-162d86c96baf |
Ejemplares similares
-
Spike-Based Reinforcement Learning in Continuous State and Action Space: When Policy Gradient Methods Fail
por: Vasilaki, Eleni, et al.
Publicado: (2009) -
Reinforcement Learning Using a Continuous Time Actor-Critic Framework with Spiking Neurons
por: Frémaux, Nicolas, et al.
Publicado: (2013) -
Policy gradient rules for populations of spiking neurons
por: Friedrich, Johannes, et al.
Publicado: (2011) -
Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules
por: Frémaux, Nicolas, et al.
Publicado: (2016) -
Gradient estimation in dendritic reinforcement learning
por: Schiess, Mathieu, et al.
Publicado: (2012)