Cargando…
Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency
BACKGROUND: Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analy...
Autores principales: | Yeh, Hsiang-Yuan, Cheng, Shih-Wu, Lin, Yu-Chun, Yeh, Cheng-Yu, Lin, Shih-Fang, Soo, Von-Wun |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805685/ https://www.ncbi.nlm.nih.gov/pubmed/20025723 http://dx.doi.org/10.1186/1755-8794-2-70 |
Ejemplares similares
-
A network flow approach to predict drug targets from microarray data, disease genes and interactome network - case study on prostate cancer
por: Yeh, Shih-Heng, et al.
Publicado: (2012) -
Biomarker Identification for Prostate Cancer and Lymph Node Metastasis from Microarray Data and Protein Interaction Network Using Gene Prioritization Method
por: Arias, Carlos Roberto, et al.
Publicado: (2012) -
Identifying co-targets to fight drug resistance based on a random walk model
por: Chen, Liang-Chun, et al.
Publicado: (2012) -
Pathway Detection from Protein Interaction Networks and Gene Expression Data Using Color-Coding Methods and A∗ Search Algorithms
por: Yeh, Cheng-Yu, et al.
Publicado: (2012) -
Nonlinear Dynamic Trans/Cis Regulatory Circuit for Gene Transcription via Microarray Data
por: Chang, Yu-Hsiang, et al.
Publicado: (2007)