Cargando…
Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity
BACKGROUND: Titanium dioxide (TiO(2)) nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade TiO(2 )(200 nm sphere) is relatively inert when internalized into a biological model system (in vivo or in vitro). For th...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806338/ https://www.ncbi.nlm.nih.gov/pubmed/20043844 http://dx.doi.org/10.1186/1743-8977-6-35 |
Sumario: | BACKGROUND: Titanium dioxide (TiO(2)) nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade TiO(2 )(200 nm sphere) is relatively inert when internalized into a biological model system (in vivo or in vitro). For this reason, TiO(2 )nanomaterials are considered an attractive alternative in applications where biological exposures will occur. Unfortunately, metal oxides on the nanoscale (one dimension < 100 nm) may or may not exhibit the same toxic potential as the original material. A further complicating issue is the effect of modifying or engineering of the nanomaterial to be structurally and geometrically different from the original material. RESULTS: TiO(2 )nanospheres, short (< 5 μm) and long (> 15 μm) nanobelts were synthesized, characterized and tested for biological activity using primary murine alveolar macrophages and in vivo in mice. This study demonstrates that alteration of anatase TiO(2 )nanomaterial into a fibre structure of greater than 15 μm creates a highly toxic particle and initiates an inflammatory response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism. Consequently, long TiO(2 )nanobelts interact with lung macrophages in a manner very similar to asbestos or silica. CONCLUSIONS: These observations suggest that any modification of a nanomaterial, resulting in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates, toxicity and pathogenic potential change dramatically as the shape of the material is altered into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption. |
---|