Cargando…

Switch recombination and somatic hypermutation are controlled by the heavy chain 3′ enhancer region

Both class switch recombination (CSR) and somatic hypermutation (SHM) require transcription and the trans-acting factor activation-induced cytidine deaminase (AID), and must be up-regulated during antigen-dependent differentiation of B lymphocytes. To test the role of the heavy chain 3′ enhancers in...

Descripción completa

Detalles Bibliográficos
Autores principales: Dunnick, Wesley A., Collins, John T., Shi, Jian, Westfield, Gerwin, Fontaine, Clinton, Hakimpour, Paul, Papavasiliou, F. Nina
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806627/
https://www.ncbi.nlm.nih.gov/pubmed/19887393
http://dx.doi.org/10.1084/jem.20091280
Descripción
Sumario:Both class switch recombination (CSR) and somatic hypermutation (SHM) require transcription and the trans-acting factor activation-induced cytidine deaminase (AID), and must be up-regulated during antigen-dependent differentiation of B lymphocytes. To test the role of the heavy chain 3′ enhancers in both CSR and SHM, we used a BAC transgene of the entire heavy chain constant region locus. Using Cre-loxP recombination to delete a 28-kb region that contains the four known 3′ heavy chain enhancers, we isolated lines of BAC transgenic mice with an intact heavy chain locus and paired lines in the same chromosomal insertion site lacking the 3′ enhancers. Intact heavy chain transgenes undergo CSR to all heavy chain genes and mutate their transgenic VDJ exon. In paired transgenes lacking the 3′ enhancer region, CSR to most heavy chain genes is reduced to ∼1% of the levels for intact heavy chain loci; SHM is also reduced. Finally, we find that in B cells with a transgene lacking the 3′ enhancers, interchromosomal recombination between the transgenic VDJ exon and the endogenous heavy chain C genes is more easily detected than CSR within the transgene.