Cargando…

Evaluating NAT2PRED for inferring the individual acetylation status from unphased genotype data

BACKGROUND: Genetically determined differences in N-acetylation capacity have proved to be important determinants of both the effectiveness of therapeutic response and the development of adverse drug reactions and toxicity during drug treatment. NAT2PRED is a web-server that allows a fast determinat...

Descripción completa

Detalles Bibliográficos
Autores principales: Sabbagh, Audrey, Darlu, Pierre, Vidaud, Michel
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806877/
https://www.ncbi.nlm.nih.gov/pubmed/20043821
http://dx.doi.org/10.1186/1471-2350-10-148
Descripción
Sumario:BACKGROUND: Genetically determined differences in N-acetylation capacity have proved to be important determinants of both the effectiveness of therapeutic response and the development of adverse drug reactions and toxicity during drug treatment. NAT2PRED is a web-server that allows a fast determination of NAT2 acetylation phenotype from genotype data without taking the extra step of reconstructing haplotypes for each individual (publicly available at http://nat2pred.rit.albany.edu). However, the classification accuracy of NAT2PRED needs to be assessed before its application can be advocated at a large scale. METHODS: The ability of NAT2PRED to classify individuals according to their acetylation status (slow, intermediate and rapid acetylators) was evaluated in a worldwide dataset composed of 56 population samples (8,489 individuals) from four continental regions. RESULTS: NAT2PRED correctly identified slow acetylators with a sensitivity above 99% for all populations outside sub-Saharan Africa. Nevertheless, NAT2PRED showed a poor ability to distinguish between intermediate and rapid acetylators, with a classification error rate reaching up to 10% in the non-African samples. CONCLUSION: NAT2PRED is an excellent tool to infer the individual acetylation status from NAT2 genotype data when the main interest is to distinguish slow acetylators from the others. This should facilitate the determination of the individual acetylation status in routine clinical practice and lead to better monitoring of risks associated with cancer and adverse drug reactions.