Cargando…

Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform

Planning intensity modulated radiation therapy (IMRT) treatment involves selection of several angle parameters as well as specification of structures and constraints employed in the optimization process. Including these parameters in the combinatorial search space vastly increases the computational...

Descripción completa

Detalles Bibliográficos
Autores principales: Nazareth, Daryl P., Brunner, Stephen, Jones, Matthew D., Malhotra, Harish K., Bakhtiari, Mohammad
Formato: Texto
Lenguaje:English
Publicado: Medknow Publications 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2807676/
https://www.ncbi.nlm.nih.gov/pubmed/20098558
http://dx.doi.org/10.4103/0971-6203.54845
_version_ 1782176419226320896
author Nazareth, Daryl P.
Brunner, Stephen
Jones, Matthew D.
Malhotra, Harish K.
Bakhtiari, Mohammad
author_facet Nazareth, Daryl P.
Brunner, Stephen
Jones, Matthew D.
Malhotra, Harish K.
Bakhtiari, Mohammad
author_sort Nazareth, Daryl P.
collection PubMed
description Planning intensity modulated radiation therapy (IMRT) treatment involves selection of several angle parameters as well as specification of structures and constraints employed in the optimization process. Including these parameters in the combinatorial search space vastly increases the computational burden, and therefore the parameter selection is normally performed manually by a clinician, based on clinical experience. We have investigated the use of a genetic algorithm (GA) and distributed-computing platform to optimize the gantry angle parameters and provide insight into additional structures, which may be necessary, in the dose optimization process to produce optimal IMRT treatment plans. For an IMRT prostate patient, we produced the first generation of 40 samples, each of five gantry angles, by selecting from a uniform random distribution, subject to certain adjacency and opposition constraints. Dose optimization was performed by distributing the 40-plan workload over several machines running a commercial treatment planning system. A score was assigned to each resulting plan, based on how well it satisfied clinically-relevant constraints. The second generation of 40 samples was produced by combining the highest-scoring samples using techniques of crossover and mutation. The process was repeated until the sixth generation, and the results compared with a clinical (equally-spaced) gantry angle configuration. In the sixth generation, 34 of the 40 GA samples achieved better scores than the clinical plan, with the best plan showing an improvement of 84%. Moreover, the resulting configuration of beam angles tended to cluster toward the patient's sides, indicating where the inclusion of additional structures in the dose optimization process may avoid dose hot spots. Additional parameter selection in IMRT leads to a large-scale computational problem. We have demonstrated that the GA combined with a distributed-computing platform can be applied to optimize gantry angle selection within a reasonable amount of time.
format Text
id pubmed-2807676
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Medknow Publications
record_format MEDLINE/PubMed
spelling pubmed-28076762010-01-22 Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform Nazareth, Daryl P. Brunner, Stephen Jones, Matthew D. Malhotra, Harish K. Bakhtiari, Mohammad J Med Phys Invited Paper Planning intensity modulated radiation therapy (IMRT) treatment involves selection of several angle parameters as well as specification of structures and constraints employed in the optimization process. Including these parameters in the combinatorial search space vastly increases the computational burden, and therefore the parameter selection is normally performed manually by a clinician, based on clinical experience. We have investigated the use of a genetic algorithm (GA) and distributed-computing platform to optimize the gantry angle parameters and provide insight into additional structures, which may be necessary, in the dose optimization process to produce optimal IMRT treatment plans. For an IMRT prostate patient, we produced the first generation of 40 samples, each of five gantry angles, by selecting from a uniform random distribution, subject to certain adjacency and opposition constraints. Dose optimization was performed by distributing the 40-plan workload over several machines running a commercial treatment planning system. A score was assigned to each resulting plan, based on how well it satisfied clinically-relevant constraints. The second generation of 40 samples was produced by combining the highest-scoring samples using techniques of crossover and mutation. The process was repeated until the sixth generation, and the results compared with a clinical (equally-spaced) gantry angle configuration. In the sixth generation, 34 of the 40 GA samples achieved better scores than the clinical plan, with the best plan showing an improvement of 84%. Moreover, the resulting configuration of beam angles tended to cluster toward the patient's sides, indicating where the inclusion of additional structures in the dose optimization process may avoid dose hot spots. Additional parameter selection in IMRT leads to a large-scale computational problem. We have demonstrated that the GA combined with a distributed-computing platform can be applied to optimize gantry angle selection within a reasonable amount of time. Medknow Publications 2009 /pmc/articles/PMC2807676/ /pubmed/20098558 http://dx.doi.org/10.4103/0971-6203.54845 Text en © Journal of Medical Physics http://creativecommons.org/licenses/by/2.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Invited Paper
Nazareth, Daryl P.
Brunner, Stephen
Jones, Matthew D.
Malhotra, Harish K.
Bakhtiari, Mohammad
Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform
title Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform
title_full Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform
title_fullStr Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform
title_full_unstemmed Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform
title_short Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform
title_sort optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform
topic Invited Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2807676/
https://www.ncbi.nlm.nih.gov/pubmed/20098558
http://dx.doi.org/10.4103/0971-6203.54845
work_keys_str_mv AT nazarethdarylp optimizationofbeamanglesforintensitymodulatedradiationtherapytreatmentplanningusinggeneticalgorithmonadistributedcomputingplatform
AT brunnerstephen optimizationofbeamanglesforintensitymodulatedradiationtherapytreatmentplanningusinggeneticalgorithmonadistributedcomputingplatform
AT jonesmatthewd optimizationofbeamanglesforintensitymodulatedradiationtherapytreatmentplanningusinggeneticalgorithmonadistributedcomputingplatform
AT malhotraharishk optimizationofbeamanglesforintensitymodulatedradiationtherapytreatmentplanningusinggeneticalgorithmonadistributedcomputingplatform
AT bakhtiarimohammad optimizationofbeamanglesforintensitymodulatedradiationtherapytreatmentplanningusinggeneticalgorithmonadistributedcomputingplatform