Cargando…
Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform
Planning intensity modulated radiation therapy (IMRT) treatment involves selection of several angle parameters as well as specification of structures and constraints employed in the optimization process. Including these parameters in the combinatorial search space vastly increases the computational...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2807676/ https://www.ncbi.nlm.nih.gov/pubmed/20098558 http://dx.doi.org/10.4103/0971-6203.54845 |
_version_ | 1782176419226320896 |
---|---|
author | Nazareth, Daryl P. Brunner, Stephen Jones, Matthew D. Malhotra, Harish K. Bakhtiari, Mohammad |
author_facet | Nazareth, Daryl P. Brunner, Stephen Jones, Matthew D. Malhotra, Harish K. Bakhtiari, Mohammad |
author_sort | Nazareth, Daryl P. |
collection | PubMed |
description | Planning intensity modulated radiation therapy (IMRT) treatment involves selection of several angle parameters as well as specification of structures and constraints employed in the optimization process. Including these parameters in the combinatorial search space vastly increases the computational burden, and therefore the parameter selection is normally performed manually by a clinician, based on clinical experience. We have investigated the use of a genetic algorithm (GA) and distributed-computing platform to optimize the gantry angle parameters and provide insight into additional structures, which may be necessary, in the dose optimization process to produce optimal IMRT treatment plans. For an IMRT prostate patient, we produced the first generation of 40 samples, each of five gantry angles, by selecting from a uniform random distribution, subject to certain adjacency and opposition constraints. Dose optimization was performed by distributing the 40-plan workload over several machines running a commercial treatment planning system. A score was assigned to each resulting plan, based on how well it satisfied clinically-relevant constraints. The second generation of 40 samples was produced by combining the highest-scoring samples using techniques of crossover and mutation. The process was repeated until the sixth generation, and the results compared with a clinical (equally-spaced) gantry angle configuration. In the sixth generation, 34 of the 40 GA samples achieved better scores than the clinical plan, with the best plan showing an improvement of 84%. Moreover, the resulting configuration of beam angles tended to cluster toward the patient's sides, indicating where the inclusion of additional structures in the dose optimization process may avoid dose hot spots. Additional parameter selection in IMRT leads to a large-scale computational problem. We have demonstrated that the GA combined with a distributed-computing platform can be applied to optimize gantry angle selection within a reasonable amount of time. |
format | Text |
id | pubmed-2807676 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Medknow Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-28076762010-01-22 Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform Nazareth, Daryl P. Brunner, Stephen Jones, Matthew D. Malhotra, Harish K. Bakhtiari, Mohammad J Med Phys Invited Paper Planning intensity modulated radiation therapy (IMRT) treatment involves selection of several angle parameters as well as specification of structures and constraints employed in the optimization process. Including these parameters in the combinatorial search space vastly increases the computational burden, and therefore the parameter selection is normally performed manually by a clinician, based on clinical experience. We have investigated the use of a genetic algorithm (GA) and distributed-computing platform to optimize the gantry angle parameters and provide insight into additional structures, which may be necessary, in the dose optimization process to produce optimal IMRT treatment plans. For an IMRT prostate patient, we produced the first generation of 40 samples, each of five gantry angles, by selecting from a uniform random distribution, subject to certain adjacency and opposition constraints. Dose optimization was performed by distributing the 40-plan workload over several machines running a commercial treatment planning system. A score was assigned to each resulting plan, based on how well it satisfied clinically-relevant constraints. The second generation of 40 samples was produced by combining the highest-scoring samples using techniques of crossover and mutation. The process was repeated until the sixth generation, and the results compared with a clinical (equally-spaced) gantry angle configuration. In the sixth generation, 34 of the 40 GA samples achieved better scores than the clinical plan, with the best plan showing an improvement of 84%. Moreover, the resulting configuration of beam angles tended to cluster toward the patient's sides, indicating where the inclusion of additional structures in the dose optimization process may avoid dose hot spots. Additional parameter selection in IMRT leads to a large-scale computational problem. We have demonstrated that the GA combined with a distributed-computing platform can be applied to optimize gantry angle selection within a reasonable amount of time. Medknow Publications 2009 /pmc/articles/PMC2807676/ /pubmed/20098558 http://dx.doi.org/10.4103/0971-6203.54845 Text en © Journal of Medical Physics http://creativecommons.org/licenses/by/2.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Invited Paper Nazareth, Daryl P. Brunner, Stephen Jones, Matthew D. Malhotra, Harish K. Bakhtiari, Mohammad Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform |
title | Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform |
title_full | Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform |
title_fullStr | Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform |
title_full_unstemmed | Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform |
title_short | Optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform |
title_sort | optimization of beam angles for intensity modulated radiation therapy treatment planning using genetic algorithm on a distributed computing platform |
topic | Invited Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2807676/ https://www.ncbi.nlm.nih.gov/pubmed/20098558 http://dx.doi.org/10.4103/0971-6203.54845 |
work_keys_str_mv | AT nazarethdarylp optimizationofbeamanglesforintensitymodulatedradiationtherapytreatmentplanningusinggeneticalgorithmonadistributedcomputingplatform AT brunnerstephen optimizationofbeamanglesforintensitymodulatedradiationtherapytreatmentplanningusinggeneticalgorithmonadistributedcomputingplatform AT jonesmatthewd optimizationofbeamanglesforintensitymodulatedradiationtherapytreatmentplanningusinggeneticalgorithmonadistributedcomputingplatform AT malhotraharishk optimizationofbeamanglesforintensitymodulatedradiationtherapytreatmentplanningusinggeneticalgorithmonadistributedcomputingplatform AT bakhtiarimohammad optimizationofbeamanglesforintensitymodulatedradiationtherapytreatmentplanningusinggeneticalgorithmonadistributedcomputingplatform |