Cargando…
Changes in Brain MicroRNAs Contribute to Cholinergic Stress Reactions
Mental stress modifies both cholinergic neurotransmission and alternative splicing in the brain, via incompletely understood mechanisms. Here, we report that stress changes brain microRNA (miR) expression and that some of these stress-regulated miRs regulate alternative splicing. Acute and chronic i...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Humana Press Inc
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2807969/ https://www.ncbi.nlm.nih.gov/pubmed/19711202 http://dx.doi.org/10.1007/s12031-009-9252-1 |
_version_ | 1782176445571792896 |
---|---|
author | Meerson, Ari Cacheaux, Luisa Goosens, Ki Ann Sapolsky, Robert M. Soreq, Hermona Kaufer, Daniela |
author_facet | Meerson, Ari Cacheaux, Luisa Goosens, Ki Ann Sapolsky, Robert M. Soreq, Hermona Kaufer, Daniela |
author_sort | Meerson, Ari |
collection | PubMed |
description | Mental stress modifies both cholinergic neurotransmission and alternative splicing in the brain, via incompletely understood mechanisms. Here, we report that stress changes brain microRNA (miR) expression and that some of these stress-regulated miRs regulate alternative splicing. Acute and chronic immobilization stress differentially altered the expression of numerous miRs in two stress-responsive regions of the rat brain, the hippocampal CA1 region and the central nucleus of the amygdala. miR-134 and miR-183 levels both increased in the amygdala following acute stress, compared to unstressed controls. Chronic stress decreased miR-134 levels, whereas miR-183 remained unchanged in both the amygdala and CA1. Importantly, miR-134 and miR-183 share a common predicted mRNA target, encoding the splicing factor SC35. Stress was previously shown to upregulate SC35, which promotes the alternative splicing of acetylcholinesterase (AChE) from the synapse-associated isoform AChE-S to the, normally rare, soluble AChE-R protein. Knockdown of miR-183 expression increased SC35 protein levels in vitro, whereas overexpression of miR-183 reduced SC35 protein levels, suggesting a physiological role for miR-183 regulation under stress. We show stress-induced changes in miR-183 and miR-134 and suggest that, by regulating splicing factors and their targets, these changes modify both alternative splicing and cholinergic neurotransmission in the stressed brain. |
format | Text |
id | pubmed-2807969 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Humana Press Inc |
record_format | MEDLINE/PubMed |
spelling | pubmed-28079692010-01-22 Changes in Brain MicroRNAs Contribute to Cholinergic Stress Reactions Meerson, Ari Cacheaux, Luisa Goosens, Ki Ann Sapolsky, Robert M. Soreq, Hermona Kaufer, Daniela J Mol Neurosci Article Mental stress modifies both cholinergic neurotransmission and alternative splicing in the brain, via incompletely understood mechanisms. Here, we report that stress changes brain microRNA (miR) expression and that some of these stress-regulated miRs regulate alternative splicing. Acute and chronic immobilization stress differentially altered the expression of numerous miRs in two stress-responsive regions of the rat brain, the hippocampal CA1 region and the central nucleus of the amygdala. miR-134 and miR-183 levels both increased in the amygdala following acute stress, compared to unstressed controls. Chronic stress decreased miR-134 levels, whereas miR-183 remained unchanged in both the amygdala and CA1. Importantly, miR-134 and miR-183 share a common predicted mRNA target, encoding the splicing factor SC35. Stress was previously shown to upregulate SC35, which promotes the alternative splicing of acetylcholinesterase (AChE) from the synapse-associated isoform AChE-S to the, normally rare, soluble AChE-R protein. Knockdown of miR-183 expression increased SC35 protein levels in vitro, whereas overexpression of miR-183 reduced SC35 protein levels, suggesting a physiological role for miR-183 regulation under stress. We show stress-induced changes in miR-183 and miR-134 and suggest that, by regulating splicing factors and their targets, these changes modify both alternative splicing and cholinergic neurotransmission in the stressed brain. Humana Press Inc 2009-08-27 2010 /pmc/articles/PMC2807969/ /pubmed/19711202 http://dx.doi.org/10.1007/s12031-009-9252-1 Text en © The Author(s) 2009 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. |
spellingShingle | Article Meerson, Ari Cacheaux, Luisa Goosens, Ki Ann Sapolsky, Robert M. Soreq, Hermona Kaufer, Daniela Changes in Brain MicroRNAs Contribute to Cholinergic Stress Reactions |
title | Changes in Brain MicroRNAs Contribute to Cholinergic Stress Reactions |
title_full | Changes in Brain MicroRNAs Contribute to Cholinergic Stress Reactions |
title_fullStr | Changes in Brain MicroRNAs Contribute to Cholinergic Stress Reactions |
title_full_unstemmed | Changes in Brain MicroRNAs Contribute to Cholinergic Stress Reactions |
title_short | Changes in Brain MicroRNAs Contribute to Cholinergic Stress Reactions |
title_sort | changes in brain micrornas contribute to cholinergic stress reactions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2807969/ https://www.ncbi.nlm.nih.gov/pubmed/19711202 http://dx.doi.org/10.1007/s12031-009-9252-1 |
work_keys_str_mv | AT meersonari changesinbrainmicrornascontributetocholinergicstressreactions AT cacheauxluisa changesinbrainmicrornascontributetocholinergicstressreactions AT goosenskiann changesinbrainmicrornascontributetocholinergicstressreactions AT sapolskyrobertm changesinbrainmicrornascontributetocholinergicstressreactions AT soreqhermona changesinbrainmicrornascontributetocholinergicstressreactions AT kauferdaniela changesinbrainmicrornascontributetocholinergicstressreactions |