Cargando…
Regularized estimation of large-scale gene association networks using graphical Gaussian models
BACKGROUND: Graphical Gaussian models are popular tools for the estimation of (undirected) gene association networks from microarray data. A key issue when the number of variables greatly exceeds the number of samples is the estimation of the matrix of partial correlations. Since the (Moore-Penrose)...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808166/ https://www.ncbi.nlm.nih.gov/pubmed/19930695 http://dx.doi.org/10.1186/1471-2105-10-384 |
_version_ | 1782176456810430464 |
---|---|
author | Krämer, Nicole Schäfer, Juliane Boulesteix, Anne-Laure |
author_facet | Krämer, Nicole Schäfer, Juliane Boulesteix, Anne-Laure |
author_sort | Krämer, Nicole |
collection | PubMed |
description | BACKGROUND: Graphical Gaussian models are popular tools for the estimation of (undirected) gene association networks from microarray data. A key issue when the number of variables greatly exceeds the number of samples is the estimation of the matrix of partial correlations. Since the (Moore-Penrose) inverse of the sample covariance matrix leads to poor estimates in this scenario, standard methods are inappropriate and adequate regularization techniques are needed. Popular approaches include biased estimates of the covariance matrix and high-dimensional regression schemes, such as the Lasso and Partial Least Squares. RESULTS: In this article, we investigate a general framework for combining regularized regression methods with the estimation of Graphical Gaussian models. This framework includes various existing methods as well as two new approaches based on ridge regression and adaptive lasso, respectively. These methods are extensively compared both qualitatively and quantitatively within a simulation study and through an application to six diverse real data sets. In addition, all proposed algorithms are implemented in the R package "parcor", available from the R repository CRAN. CONCLUSION: In our simulation studies, the investigated non-sparse regression methods, i.e. Ridge Regression and Partial Least Squares, exhibit rather conservative behavior when combined with (local) false discovery rate multiple testing in order to decide whether or not an edge is present in the network. For networks with higher densities, the difference in performance of the methods decreases. For sparse networks, we confirm the Lasso's well known tendency towards selecting too many edges, whereas the two-stage adaptive Lasso is an interesting alternative that provides sparser solutions. In our simulations, both sparse and non-sparse methods are able to reconstruct networks with cluster structures. On six real data sets, we also clearly distinguish the results obtained using the non-sparse methods and those obtained using the sparse methods where specification of the regularization parameter automatically means model selection. In five out of six data sets, Partial Least Squares selects very dense networks. Furthermore, for data that violate the assumption of uncorrelated observations (due to replications), the Lasso and the adaptive Lasso yield very complex structures, indicating that they might not be suited under these conditions. The shrinkage approach is more stable than the regression based approaches when using subsampling. |
format | Text |
id | pubmed-2808166 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-28081662010-01-20 Regularized estimation of large-scale gene association networks using graphical Gaussian models Krämer, Nicole Schäfer, Juliane Boulesteix, Anne-Laure BMC Bioinformatics Research article BACKGROUND: Graphical Gaussian models are popular tools for the estimation of (undirected) gene association networks from microarray data. A key issue when the number of variables greatly exceeds the number of samples is the estimation of the matrix of partial correlations. Since the (Moore-Penrose) inverse of the sample covariance matrix leads to poor estimates in this scenario, standard methods are inappropriate and adequate regularization techniques are needed. Popular approaches include biased estimates of the covariance matrix and high-dimensional regression schemes, such as the Lasso and Partial Least Squares. RESULTS: In this article, we investigate a general framework for combining regularized regression methods with the estimation of Graphical Gaussian models. This framework includes various existing methods as well as two new approaches based on ridge regression and adaptive lasso, respectively. These methods are extensively compared both qualitatively and quantitatively within a simulation study and through an application to six diverse real data sets. In addition, all proposed algorithms are implemented in the R package "parcor", available from the R repository CRAN. CONCLUSION: In our simulation studies, the investigated non-sparse regression methods, i.e. Ridge Regression and Partial Least Squares, exhibit rather conservative behavior when combined with (local) false discovery rate multiple testing in order to decide whether or not an edge is present in the network. For networks with higher densities, the difference in performance of the methods decreases. For sparse networks, we confirm the Lasso's well known tendency towards selecting too many edges, whereas the two-stage adaptive Lasso is an interesting alternative that provides sparser solutions. In our simulations, both sparse and non-sparse methods are able to reconstruct networks with cluster structures. On six real data sets, we also clearly distinguish the results obtained using the non-sparse methods and those obtained using the sparse methods where specification of the regularization parameter automatically means model selection. In five out of six data sets, Partial Least Squares selects very dense networks. Furthermore, for data that violate the assumption of uncorrelated observations (due to replications), the Lasso and the adaptive Lasso yield very complex structures, indicating that they might not be suited under these conditions. The shrinkage approach is more stable than the regression based approaches when using subsampling. BioMed Central 2009-11-24 /pmc/articles/PMC2808166/ /pubmed/19930695 http://dx.doi.org/10.1186/1471-2105-10-384 Text en Copyright ©2009 Krämer et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research article Krämer, Nicole Schäfer, Juliane Boulesteix, Anne-Laure Regularized estimation of large-scale gene association networks using graphical Gaussian models |
title | Regularized estimation of large-scale gene association networks using graphical Gaussian models |
title_full | Regularized estimation of large-scale gene association networks using graphical Gaussian models |
title_fullStr | Regularized estimation of large-scale gene association networks using graphical Gaussian models |
title_full_unstemmed | Regularized estimation of large-scale gene association networks using graphical Gaussian models |
title_short | Regularized estimation of large-scale gene association networks using graphical Gaussian models |
title_sort | regularized estimation of large-scale gene association networks using graphical gaussian models |
topic | Research article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808166/ https://www.ncbi.nlm.nih.gov/pubmed/19930695 http://dx.doi.org/10.1186/1471-2105-10-384 |
work_keys_str_mv | AT kramernicole regularizedestimationoflargescalegeneassociationnetworksusinggraphicalgaussianmodels AT schaferjuliane regularizedestimationoflargescalegeneassociationnetworksusinggraphicalgaussianmodels AT boulesteixannelaure regularizedestimationoflargescalegeneassociationnetworksusinggraphicalgaussianmodels |