Cargando…
Regularized estimation of large-scale gene association networks using graphical Gaussian models
BACKGROUND: Graphical Gaussian models are popular tools for the estimation of (undirected) gene association networks from microarray data. A key issue when the number of variables greatly exceeds the number of samples is the estimation of the matrix of partial correlations. Since the (Moore-Penrose)...
Autores principales: | Krämer, Nicole, Schäfer, Juliane, Boulesteix, Anne-Laure |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808166/ https://www.ncbi.nlm.nih.gov/pubmed/19930695 http://dx.doi.org/10.1186/1471-2105-10-384 |
Ejemplares similares
-
Iterative Reconstruction of High-Dimensional Gaussian Graphical Models Based on a New Method to Estimate Partial Correlations under Constraints
por: Guillemot, Vincent, et al.
Publicado: (2013) -
Joint Microbial and Metabolomic Network Estimation with the Censored Gaussian Graphical Model
por: Ma, Jing
Publicado: (2020) -
Clustering Single-Cell RNA-Seq Data with Regularized Gaussian Graphical Model
por: Liu, Zhenqiu
Publicado: (2021) -
Fast Bayesian inference in large Gaussian graphical models
por: Leday, Gwenaël G. R., et al.
Publicado: (2019) -
Penalized estimation of the Gaussian graphical model from data with replicates
por: van Wieringen, Wessel N., et al.
Publicado: (2021)