Cargando…
A Rho Scaffold Integrates the Secretory System with Feedback Mechanisms in Regulation of Auxin Distribution
Development in multicellular organisms depends on the ability of individual cells to coordinate their behavior by means of small signaling molecules to form correctly patterned tissues. In plants, a unique mechanism of directional transport of the signaling molecule auxin between cells connects cell...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808208/ https://www.ncbi.nlm.nih.gov/pubmed/20098722 http://dx.doi.org/10.1371/journal.pbio.1000282 |
_version_ | 1782176461966278656 |
---|---|
author | Hazak, Ora Bloch, Daria Poraty, Limor Sternberg, Hasana Zhang, Jing Friml, Jiří Yalovsky, Shaul |
author_facet | Hazak, Ora Bloch, Daria Poraty, Limor Sternberg, Hasana Zhang, Jing Friml, Jiří Yalovsky, Shaul |
author_sort | Hazak, Ora |
collection | PubMed |
description | Development in multicellular organisms depends on the ability of individual cells to coordinate their behavior by means of small signaling molecules to form correctly patterned tissues. In plants, a unique mechanism of directional transport of the signaling molecule auxin between cells connects cell polarity and tissue patterning and thus is required for many aspects of plant development. Direction of auxin flow is determined by polar subcellular localization of PIN auxin efflux transporters. Dynamic PIN polar localization results from the constitutive endocytic cycling to and from the plasma membrane, but it is not well understood how this mechanism connects to regulators of cell polarity. The Rho family small GTPases ROPs/RACs are master regulators of cell polarity, however their role in regulating polar protein trafficking and polar auxin transport has not been established. Here, by analysis of mutants and transgenic plants, we show that the ROP interactor and polarity regulator scaffold protein ICR1 is required for recruitment of PIN proteins to the polar domains at the plasma membrane. icr1 mutant embryos and plants display an a array of severe developmental aberrations that are caused by compromised differential auxin distribution. ICR1 functions at the plasma membrane where it is required for exocytosis but does not recycle together with PINs. ICR1 expression is quickly induced by auxin but is suppressed at the positions of stable auxin maxima in the hypophysis and later in the embryonic and mature root meristems. Our results imply that ICR1 is part of an auxin regulated positive feedback loop realized by a unique integration of auxin-dependent transcriptional regulation into ROP-mediated modulation of cell polarity. Thus, ICR1 forms an auxin-modulated link between cell polarity, exocytosis, and auxin transport-dependent tissue patterning. |
format | Text |
id | pubmed-2808208 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-28082082010-01-21 A Rho Scaffold Integrates the Secretory System with Feedback Mechanisms in Regulation of Auxin Distribution Hazak, Ora Bloch, Daria Poraty, Limor Sternberg, Hasana Zhang, Jing Friml, Jiří Yalovsky, Shaul PLoS Biol Research Article Development in multicellular organisms depends on the ability of individual cells to coordinate their behavior by means of small signaling molecules to form correctly patterned tissues. In plants, a unique mechanism of directional transport of the signaling molecule auxin between cells connects cell polarity and tissue patterning and thus is required for many aspects of plant development. Direction of auxin flow is determined by polar subcellular localization of PIN auxin efflux transporters. Dynamic PIN polar localization results from the constitutive endocytic cycling to and from the plasma membrane, but it is not well understood how this mechanism connects to regulators of cell polarity. The Rho family small GTPases ROPs/RACs are master regulators of cell polarity, however their role in regulating polar protein trafficking and polar auxin transport has not been established. Here, by analysis of mutants and transgenic plants, we show that the ROP interactor and polarity regulator scaffold protein ICR1 is required for recruitment of PIN proteins to the polar domains at the plasma membrane. icr1 mutant embryos and plants display an a array of severe developmental aberrations that are caused by compromised differential auxin distribution. ICR1 functions at the plasma membrane where it is required for exocytosis but does not recycle together with PINs. ICR1 expression is quickly induced by auxin but is suppressed at the positions of stable auxin maxima in the hypophysis and later in the embryonic and mature root meristems. Our results imply that ICR1 is part of an auxin regulated positive feedback loop realized by a unique integration of auxin-dependent transcriptional regulation into ROP-mediated modulation of cell polarity. Thus, ICR1 forms an auxin-modulated link between cell polarity, exocytosis, and auxin transport-dependent tissue patterning. Public Library of Science 2010-01-19 /pmc/articles/PMC2808208/ /pubmed/20098722 http://dx.doi.org/10.1371/journal.pbio.1000282 Text en Hazak et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Hazak, Ora Bloch, Daria Poraty, Limor Sternberg, Hasana Zhang, Jing Friml, Jiří Yalovsky, Shaul A Rho Scaffold Integrates the Secretory System with Feedback Mechanisms in Regulation of Auxin Distribution |
title | A Rho Scaffold Integrates the Secretory System with Feedback Mechanisms in Regulation of Auxin Distribution |
title_full | A Rho Scaffold Integrates the Secretory System with Feedback Mechanisms in Regulation of Auxin Distribution |
title_fullStr | A Rho Scaffold Integrates the Secretory System with Feedback Mechanisms in Regulation of Auxin Distribution |
title_full_unstemmed | A Rho Scaffold Integrates the Secretory System with Feedback Mechanisms in Regulation of Auxin Distribution |
title_short | A Rho Scaffold Integrates the Secretory System with Feedback Mechanisms in Regulation of Auxin Distribution |
title_sort | rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808208/ https://www.ncbi.nlm.nih.gov/pubmed/20098722 http://dx.doi.org/10.1371/journal.pbio.1000282 |
work_keys_str_mv | AT hazakora arhoscaffoldintegratesthesecretorysystemwithfeedbackmechanismsinregulationofauxindistribution AT blochdaria arhoscaffoldintegratesthesecretorysystemwithfeedbackmechanismsinregulationofauxindistribution AT poratylimor arhoscaffoldintegratesthesecretorysystemwithfeedbackmechanismsinregulationofauxindistribution AT sternberghasana arhoscaffoldintegratesthesecretorysystemwithfeedbackmechanismsinregulationofauxindistribution AT zhangjing arhoscaffoldintegratesthesecretorysystemwithfeedbackmechanismsinregulationofauxindistribution AT frimljiri arhoscaffoldintegratesthesecretorysystemwithfeedbackmechanismsinregulationofauxindistribution AT yalovskyshaul arhoscaffoldintegratesthesecretorysystemwithfeedbackmechanismsinregulationofauxindistribution AT hazakora rhoscaffoldintegratesthesecretorysystemwithfeedbackmechanismsinregulationofauxindistribution AT blochdaria rhoscaffoldintegratesthesecretorysystemwithfeedbackmechanismsinregulationofauxindistribution AT poratylimor rhoscaffoldintegratesthesecretorysystemwithfeedbackmechanismsinregulationofauxindistribution AT sternberghasana rhoscaffoldintegratesthesecretorysystemwithfeedbackmechanismsinregulationofauxindistribution AT zhangjing rhoscaffoldintegratesthesecretorysystemwithfeedbackmechanismsinregulationofauxindistribution AT frimljiri rhoscaffoldintegratesthesecretorysystemwithfeedbackmechanismsinregulationofauxindistribution AT yalovskyshaul rhoscaffoldintegratesthesecretorysystemwithfeedbackmechanismsinregulationofauxindistribution |