Cargando…
Fast Microtubule Dynamics in Meiotic Spindles Measured by Single Molecule Imaging: Evidence That the Spindle Environment Does Not Stabilize Microtubules
Metaphase spindles are steady-state ensembles of microtubules that turn over rapidly and slide poleward in some systems. Since the discovery of dynamic instability in the mid-1980s, models for spindle morphogenesis have proposed that microtubules are stabilized by the spindle environment. We used si...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808228/ https://www.ncbi.nlm.nih.gov/pubmed/19940016 http://dx.doi.org/10.1091/mbc.E09-09-0816 |
_version_ | 1782176464304603136 |
---|---|
author | Needleman, Daniel J. Groen, Aaron Ohi, Ryoma Maresca, Tom Mirny, Leonid Mitchison, Tim |
author_facet | Needleman, Daniel J. Groen, Aaron Ohi, Ryoma Maresca, Tom Mirny, Leonid Mitchison, Tim |
author_sort | Needleman, Daniel J. |
collection | PubMed |
description | Metaphase spindles are steady-state ensembles of microtubules that turn over rapidly and slide poleward in some systems. Since the discovery of dynamic instability in the mid-1980s, models for spindle morphogenesis have proposed that microtubules are stabilized by the spindle environment. We used single molecule imaging to measure tubulin turnover in spindles, and nonspindle assemblies, in Xenopus laevis egg extracts. We observed many events where tubulin molecules spend only a few seconds in polymer and thus are difficult to reconcile with standard models of polymerization dynamics. Our data can be quantitatively explained by a simple, phenomenological model—with only one adjustable parameter—in which the growing and shrinking of microtubule ends is approximated as a biased random walk. Microtubule turnover kinetics did not vary with position in the spindle and were the same in spindles and nonspindle ensembles nucleated by Tetrahymena pellicles. These results argue that the high density of microtubules in spindles compared with bulk cytoplasm is caused by local enhancement of nucleation and not by local stabilization. It follows that the key to understanding spindle morphogenesis will be to elucidate how nucleation is spatially controlled. |
format | Text |
id | pubmed-2808228 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2010 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-28082282010-03-30 Fast Microtubule Dynamics in Meiotic Spindles Measured by Single Molecule Imaging: Evidence That the Spindle Environment Does Not Stabilize Microtubules Needleman, Daniel J. Groen, Aaron Ohi, Ryoma Maresca, Tom Mirny, Leonid Mitchison, Tim Mol Biol Cell Articles Metaphase spindles are steady-state ensembles of microtubules that turn over rapidly and slide poleward in some systems. Since the discovery of dynamic instability in the mid-1980s, models for spindle morphogenesis have proposed that microtubules are stabilized by the spindle environment. We used single molecule imaging to measure tubulin turnover in spindles, and nonspindle assemblies, in Xenopus laevis egg extracts. We observed many events where tubulin molecules spend only a few seconds in polymer and thus are difficult to reconcile with standard models of polymerization dynamics. Our data can be quantitatively explained by a simple, phenomenological model—with only one adjustable parameter—in which the growing and shrinking of microtubule ends is approximated as a biased random walk. Microtubule turnover kinetics did not vary with position in the spindle and were the same in spindles and nonspindle ensembles nucleated by Tetrahymena pellicles. These results argue that the high density of microtubules in spindles compared with bulk cytoplasm is caused by local enhancement of nucleation and not by local stabilization. It follows that the key to understanding spindle morphogenesis will be to elucidate how nucleation is spatially controlled. The American Society for Cell Biology 2010-01-15 /pmc/articles/PMC2808228/ /pubmed/19940016 http://dx.doi.org/10.1091/mbc.E09-09-0816 Text en © 2010 by The American Society for Cell Biology |
spellingShingle | Articles Needleman, Daniel J. Groen, Aaron Ohi, Ryoma Maresca, Tom Mirny, Leonid Mitchison, Tim Fast Microtubule Dynamics in Meiotic Spindles Measured by Single Molecule Imaging: Evidence That the Spindle Environment Does Not Stabilize Microtubules |
title | Fast Microtubule Dynamics in Meiotic Spindles Measured by Single Molecule Imaging: Evidence That the Spindle Environment Does Not Stabilize Microtubules |
title_full | Fast Microtubule Dynamics in Meiotic Spindles Measured by Single Molecule Imaging: Evidence That the Spindle Environment Does Not Stabilize Microtubules |
title_fullStr | Fast Microtubule Dynamics in Meiotic Spindles Measured by Single Molecule Imaging: Evidence That the Spindle Environment Does Not Stabilize Microtubules |
title_full_unstemmed | Fast Microtubule Dynamics in Meiotic Spindles Measured by Single Molecule Imaging: Evidence That the Spindle Environment Does Not Stabilize Microtubules |
title_short | Fast Microtubule Dynamics in Meiotic Spindles Measured by Single Molecule Imaging: Evidence That the Spindle Environment Does Not Stabilize Microtubules |
title_sort | fast microtubule dynamics in meiotic spindles measured by single molecule imaging: evidence that the spindle environment does not stabilize microtubules |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808228/ https://www.ncbi.nlm.nih.gov/pubmed/19940016 http://dx.doi.org/10.1091/mbc.E09-09-0816 |
work_keys_str_mv | AT needlemandanielj fastmicrotubuledynamicsinmeioticspindlesmeasuredbysinglemoleculeimagingevidencethatthespindleenvironmentdoesnotstabilizemicrotubules AT groenaaron fastmicrotubuledynamicsinmeioticspindlesmeasuredbysinglemoleculeimagingevidencethatthespindleenvironmentdoesnotstabilizemicrotubules AT ohiryoma fastmicrotubuledynamicsinmeioticspindlesmeasuredbysinglemoleculeimagingevidencethatthespindleenvironmentdoesnotstabilizemicrotubules AT marescatom fastmicrotubuledynamicsinmeioticspindlesmeasuredbysinglemoleculeimagingevidencethatthespindleenvironmentdoesnotstabilizemicrotubules AT mirnyleonid fastmicrotubuledynamicsinmeioticspindlesmeasuredbysinglemoleculeimagingevidencethatthespindleenvironmentdoesnotstabilizemicrotubules AT mitchisontim fastmicrotubuledynamicsinmeioticspindlesmeasuredbysinglemoleculeimagingevidencethatthespindleenvironmentdoesnotstabilizemicrotubules |