Cargando…
Inferring Drosophila gap gene regulatory network: pattern analysis of simulated gene expression profiles and stability analysis
BACKGROUND: Inference of gene regulatory networks (GRNs) requires accurate data, a method to simulate the expression patterns and an efficient optimization algorithm to estimate the unknown parameters. Using this approach it is possible to obtain alternative circuits without making any a priori assu...
Autores principales: | Fomekong-Nanfack, Yves, Postma, Marten, Kaandorp, Jaap A |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808311/ https://www.ncbi.nlm.nih.gov/pubmed/20015372 http://dx.doi.org/10.1186/1756-0500-2-256 |
Ejemplares similares
-
Inferring Drosophila gap gene regulatory network: a parameter sensitivity and perturbation analysis
por: Fomekong-Nanfack, Yves, et al.
Publicado: (2009) -
Modeling Filamentous Cyanobacteria Reveals the Advantages of Long and Fast Trichomes for Optimizing Light Exposure
por: Tamulonis, Carlos, et al.
Publicado: (2011) -
Spatial gene expression quantification: a tool for analysis of in situ hybridizations in sea anemone Nematostella vectensis
por: Botman, Daniel, et al.
Publicado: (2012) -
A Machine Learning Approach to Simulate Gene Expression and Infer Gene Regulatory Networks †
por: Zito, Francesco, et al.
Publicado: (2023) -
Ensemble Inference and Inferability of Gene Regulatory Networks
por: Ud-Dean, S. M. Minhaz, et al.
Publicado: (2014)