Cargando…

Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties

BACKGROUND: The identification of genetic target genes is a key step for rational engineering of production strains towards bio-based chemicals, fuels or therapeutics. This is often a difficult task, because superior production performance typically requires a combination of multiple targets, whereb...

Descripción completa

Detalles Bibliográficos
Autores principales: Melzer, Guido, Esfandabadi, Manely Eslahpazir, Franco-Lara, Ezequiel, Wittmann, Christoph
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808316/
https://www.ncbi.nlm.nih.gov/pubmed/20035624
http://dx.doi.org/10.1186/1752-0509-3-120
_version_ 1782176475930165248
author Melzer, Guido
Esfandabadi, Manely Eslahpazir
Franco-Lara, Ezequiel
Wittmann, Christoph
author_facet Melzer, Guido
Esfandabadi, Manely Eslahpazir
Franco-Lara, Ezequiel
Wittmann, Christoph
author_sort Melzer, Guido
collection PubMed
description BACKGROUND: The identification of genetic target genes is a key step for rational engineering of production strains towards bio-based chemicals, fuels or therapeutics. This is often a difficult task, because superior production performance typically requires a combination of multiple targets, whereby the complex metabolic networks complicate straightforward identification. Recent attempts towards target prediction mainly focus on the prediction of gene deletion targets and therefore can cover only a part of genetic modifications proven valuable in metabolic engineering. Efficient in silico methods for simultaneous genome-scale identification of targets to be amplified or deleted are still lacking. RESULTS: Here we propose the identification of targets via flux correlation to a chosen objective flux as approach towards improved biotechnological production strains with optimally designed fluxes. The approach, we name Flux Design, computes elementary modes and, by search through the modes, identifies targets to be amplified (positive correlation) or down-regulated (negative correlation). Supported by statistical evaluation, a target potential is attributed to the identified reactions in a quantitative manner. Based on systems-wide models of the industrial microorganisms Corynebacterium glutamicum and Aspergillus niger, up to more than 20,000 modes were obtained for each case, differing strongly in production performance and intracellular fluxes. For lysine production in C. glutamicum the identified targets nicely matched with reported successful metabolic engineering strategies. In addition, simulations revealed insights, e.g. into the flexibility of energy metabolism. For enzyme production in A.niger flux correlation analysis suggested a number of targets, including non-obvious ones. Hereby, the relevance of most targets depended on the metabolic state of the cell and also on the carbon source. CONCLUSIONS: Objective flux correlation analysis provided a detailed insight into the metabolic networks of industrially relevant prokaryotic and eukaryotic microorganisms. It was shown that capacity, pathway usage, and relevant genetic targets for optimal production partly depend on the network structure and the metabolic state of the cell which should be considered in future metabolic engineering strategies. The presented strategy can be generally used to identify priority sorted amplification and deletion targets for metabolic engineering purposes under various conditions and thus displays a useful strategy to be incorporated into efficient strain and bioprocess optimization.
format Text
id pubmed-2808316
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-28083162010-01-20 Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties Melzer, Guido Esfandabadi, Manely Eslahpazir Franco-Lara, Ezequiel Wittmann, Christoph BMC Syst Biol Research article BACKGROUND: The identification of genetic target genes is a key step for rational engineering of production strains towards bio-based chemicals, fuels or therapeutics. This is often a difficult task, because superior production performance typically requires a combination of multiple targets, whereby the complex metabolic networks complicate straightforward identification. Recent attempts towards target prediction mainly focus on the prediction of gene deletion targets and therefore can cover only a part of genetic modifications proven valuable in metabolic engineering. Efficient in silico methods for simultaneous genome-scale identification of targets to be amplified or deleted are still lacking. RESULTS: Here we propose the identification of targets via flux correlation to a chosen objective flux as approach towards improved biotechnological production strains with optimally designed fluxes. The approach, we name Flux Design, computes elementary modes and, by search through the modes, identifies targets to be amplified (positive correlation) or down-regulated (negative correlation). Supported by statistical evaluation, a target potential is attributed to the identified reactions in a quantitative manner. Based on systems-wide models of the industrial microorganisms Corynebacterium glutamicum and Aspergillus niger, up to more than 20,000 modes were obtained for each case, differing strongly in production performance and intracellular fluxes. For lysine production in C. glutamicum the identified targets nicely matched with reported successful metabolic engineering strategies. In addition, simulations revealed insights, e.g. into the flexibility of energy metabolism. For enzyme production in A.niger flux correlation analysis suggested a number of targets, including non-obvious ones. Hereby, the relevance of most targets depended on the metabolic state of the cell and also on the carbon source. CONCLUSIONS: Objective flux correlation analysis provided a detailed insight into the metabolic networks of industrially relevant prokaryotic and eukaryotic microorganisms. It was shown that capacity, pathway usage, and relevant genetic targets for optimal production partly depend on the network structure and the metabolic state of the cell which should be considered in future metabolic engineering strategies. The presented strategy can be generally used to identify priority sorted amplification and deletion targets for metabolic engineering purposes under various conditions and thus displays a useful strategy to be incorporated into efficient strain and bioprocess optimization. BioMed Central 2009-12-25 /pmc/articles/PMC2808316/ /pubmed/20035624 http://dx.doi.org/10.1186/1752-0509-3-120 Text en Copyright ©2009 Melzer et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research article
Melzer, Guido
Esfandabadi, Manely Eslahpazir
Franco-Lara, Ezequiel
Wittmann, Christoph
Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties
title Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties
title_full Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties
title_fullStr Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties
title_full_unstemmed Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties
title_short Flux Design: In silico design of cell factories based on correlation of pathway fluxes to desired properties
title_sort flux design: in silico design of cell factories based on correlation of pathway fluxes to desired properties
topic Research article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808316/
https://www.ncbi.nlm.nih.gov/pubmed/20035624
http://dx.doi.org/10.1186/1752-0509-3-120
work_keys_str_mv AT melzerguido fluxdesigninsilicodesignofcellfactoriesbasedoncorrelationofpathwayfluxestodesiredproperties
AT esfandabadimanelyeslahpazir fluxdesigninsilicodesignofcellfactoriesbasedoncorrelationofpathwayfluxestodesiredproperties
AT francolaraezequiel fluxdesigninsilicodesignofcellfactoriesbasedoncorrelationofpathwayfluxestodesiredproperties
AT wittmannchristoph fluxdesigninsilicodesignofcellfactoriesbasedoncorrelationofpathwayfluxestodesiredproperties