Cargando…

Quantifying the impact of community quarantine on SARS transmission in Ontario: estimation of secondary case count difference and number needed to quarantine

BACKGROUND: Community quarantine is controversial, and the decision to use and prepare for it should be informed by specific quantitative evidence of benefit. Case-study reports on 2002-2004 SARS outbreaks have discussed the role of quarantine in the community in transmission. However, this literatu...

Descripción completa

Detalles Bibliográficos
Autores principales: Bondy, Susan J, Russell, Margaret L, Laflèche, Julie ML, Rea, Elizabeth
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808319/
https://www.ncbi.nlm.nih.gov/pubmed/20034405
http://dx.doi.org/10.1186/1471-2458-9-488
_version_ 1782176476644245504
author Bondy, Susan J
Russell, Margaret L
Laflèche, Julie ML
Rea, Elizabeth
author_facet Bondy, Susan J
Russell, Margaret L
Laflèche, Julie ML
Rea, Elizabeth
author_sort Bondy, Susan J
collection PubMed
description BACKGROUND: Community quarantine is controversial, and the decision to use and prepare for it should be informed by specific quantitative evidence of benefit. Case-study reports on 2002-2004 SARS outbreaks have discussed the role of quarantine in the community in transmission. However, this literature has not yielded quantitative estimates of the reduction in secondary cases attributable to quarantine as would be seen in other areas of health policy and cost-effectiveness analysis. METHODS: Using data from the 2003 Ontario, Canada, SARS outbreak, two novel expressions for the impact of quarantine are presented. Secondary Case Count Difference (SCCD) reflects reduction in the average number of transmissions arising from a SARS case in quarantine, relative to not in quarantine, at onset of symptoms. SCCD was estimated using Poisson and negative binomial regression models (with identity link function) comparing the number of secondary cases to each index case for quarantine relative to non-quarantined index cases. The inverse of this statistic is proposed as the number needed to quarantine (NNQ) to prevent one additional secondary transmission. RESULTS: Our estimated SCCD was 0.133 fewer secondary cases per quarantined versus non-quarantined index case; and a NNQ of 7.5 exposed individuals to be placed in community quarantine to prevent one additional case of transmission in the community. This analysis suggests quarantine can be an effective preventive measure, although these estimates lack statistical precision. CONCLUSIONS: Relative to other health policy areas, literature on quarantine tends to lack in quantitative expressions of effectiveness, or agreement on how best to report differences in outcomes attributable to control measure. We hope to further this discussion through presentation of means to calculate and express the impact of population control measures. The study of quarantine effectiveness presents several methodological and statistical challenges. Further research and discussion are needed to understand the costs and benefits of enacting quarantine, and this includes a discussion of how quantitative benefit should be communicated to decision-makers and the public, and evaluated.
format Text
id pubmed-2808319
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-28083192010-01-20 Quantifying the impact of community quarantine on SARS transmission in Ontario: estimation of secondary case count difference and number needed to quarantine Bondy, Susan J Russell, Margaret L Laflèche, Julie ML Rea, Elizabeth BMC Public Health Research article BACKGROUND: Community quarantine is controversial, and the decision to use and prepare for it should be informed by specific quantitative evidence of benefit. Case-study reports on 2002-2004 SARS outbreaks have discussed the role of quarantine in the community in transmission. However, this literature has not yielded quantitative estimates of the reduction in secondary cases attributable to quarantine as would be seen in other areas of health policy and cost-effectiveness analysis. METHODS: Using data from the 2003 Ontario, Canada, SARS outbreak, two novel expressions for the impact of quarantine are presented. Secondary Case Count Difference (SCCD) reflects reduction in the average number of transmissions arising from a SARS case in quarantine, relative to not in quarantine, at onset of symptoms. SCCD was estimated using Poisson and negative binomial regression models (with identity link function) comparing the number of secondary cases to each index case for quarantine relative to non-quarantined index cases. The inverse of this statistic is proposed as the number needed to quarantine (NNQ) to prevent one additional secondary transmission. RESULTS: Our estimated SCCD was 0.133 fewer secondary cases per quarantined versus non-quarantined index case; and a NNQ of 7.5 exposed individuals to be placed in community quarantine to prevent one additional case of transmission in the community. This analysis suggests quarantine can be an effective preventive measure, although these estimates lack statistical precision. CONCLUSIONS: Relative to other health policy areas, literature on quarantine tends to lack in quantitative expressions of effectiveness, or agreement on how best to report differences in outcomes attributable to control measure. We hope to further this discussion through presentation of means to calculate and express the impact of population control measures. The study of quarantine effectiveness presents several methodological and statistical challenges. Further research and discussion are needed to understand the costs and benefits of enacting quarantine, and this includes a discussion of how quantitative benefit should be communicated to decision-makers and the public, and evaluated. BioMed Central 2009-12-24 /pmc/articles/PMC2808319/ /pubmed/20034405 http://dx.doi.org/10.1186/1471-2458-9-488 Text en Copyright ©2009 Bondy et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research article
Bondy, Susan J
Russell, Margaret L
Laflèche, Julie ML
Rea, Elizabeth
Quantifying the impact of community quarantine on SARS transmission in Ontario: estimation of secondary case count difference and number needed to quarantine
title Quantifying the impact of community quarantine on SARS transmission in Ontario: estimation of secondary case count difference and number needed to quarantine
title_full Quantifying the impact of community quarantine on SARS transmission in Ontario: estimation of secondary case count difference and number needed to quarantine
title_fullStr Quantifying the impact of community quarantine on SARS transmission in Ontario: estimation of secondary case count difference and number needed to quarantine
title_full_unstemmed Quantifying the impact of community quarantine on SARS transmission in Ontario: estimation of secondary case count difference and number needed to quarantine
title_short Quantifying the impact of community quarantine on SARS transmission in Ontario: estimation of secondary case count difference and number needed to quarantine
title_sort quantifying the impact of community quarantine on sars transmission in ontario: estimation of secondary case count difference and number needed to quarantine
topic Research article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808319/
https://www.ncbi.nlm.nih.gov/pubmed/20034405
http://dx.doi.org/10.1186/1471-2458-9-488
work_keys_str_mv AT bondysusanj quantifyingtheimpactofcommunityquarantineonsarstransmissioninontarioestimationofsecondarycasecountdifferenceandnumberneededtoquarantine
AT russellmargaretl quantifyingtheimpactofcommunityquarantineonsarstransmissioninontarioestimationofsecondarycasecountdifferenceandnumberneededtoquarantine
AT laflechejulieml quantifyingtheimpactofcommunityquarantineonsarstransmissioninontarioestimationofsecondarycasecountdifferenceandnumberneededtoquarantine
AT reaelizabeth quantifyingtheimpactofcommunityquarantineonsarstransmissioninontarioestimationofsecondarycasecountdifferenceandnumberneededtoquarantine